BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33028823)

  • 1. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia.
    Wang F; Zhao J; Li Q; Yang J; Li R; Min J; Yu X; Zheng GW; Yu HL; Zhai C; Acevedo-Rocha CG; Ma L; Li A
    Nat Commun; 2020 Oct; 11(1):5035. PubMed ID: 33028823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli.
    van Nuland YM; Eggink G; Weusthuis RA
    Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming Inert Cycloalkanes into α,ω-Diamines by Designed Enzymatic Cascade Catalysis.
    Zhang Z; Fang L; Wang F; Deng Y; Jiang Z; Li A
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202215935. PubMed ID: 36840725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2015 Sep; 63(37):8199-208. PubMed ID: 26359801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli.
    Kim SK; Park YC
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Upgrading of Acetate into Value-Added Products-Examining Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches.
    Kutscha R; Pflügl S
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of α,ω-Dicarboxylic Acid Production by the Expression of Xylose Reductase for Refactoring Redox Cofactor Regeneration.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2018 Apr; 66(13):3489-3497. PubMed ID: 29537267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Metabolic Engineering of
    Ye DY; Moon JH; Jung GY
    J Agric Food Chem; 2023 Jul; 71(29):10916-10931. PubMed ID: 37458388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocatalytic, one-pot diterminal oxidation and esterification of n-alkanes for production of α,ω-diol and α,ω-dicarboxylic acid esters.
    van Nuland YM; de Vogel FA; Scott EL; Eggink G; Weusthuis RA
    Metab Eng; 2017 Nov; 44():134-142. PubMed ID: 28993212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective biocatalytic reduction of conjugated nitroalkenes: new application for an Escherichia coli BL21(DE3) expression strain.
    Jovanovic P; Jeremic S; Djokic L; Savic V; Radivojevic J; Maslak V; Ivkovic B; Vasiljevic B; Nikodinovic-Runic J
    Enzyme Microb Technol; 2014 Jun; 60():16-23. PubMed ID: 24835095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
    Kuhn D; Fritzsch FS; Zhang X; Wendisch VF; Blank LM; Bühler B; Schmid A
    J Biotechnol; 2013 Jan; 163(2):194-203. PubMed ID: 22922011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].
    Wang J; Liu W; Xu X; Zhang H; Xian M
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1363-73. PubMed ID: 24432652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis for producing long-chain dicarboxylic acids.
    Wang J; Peng J; Fan H; Xiu X; Xue L; Wang L; Su J; Yang X; Wang R
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):971-981. PubMed ID: 30187242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of phenylpropionic acids by an amino-group-transformation biocatalytic cascade.
    Wang J; Song W; Wu J; Liu J; Chen X; Liu L
    Biotechnol Bioeng; 2020 Mar; 117(3):614-625. PubMed ID: 31803933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioproduction of Benzylamine from Renewable Feedstocks via a Nine-Step Artificial Enzyme Cascade and Engineered Metabolic Pathways.
    Zhou Y; Wu S; Mao J; Li Z
    ChemSusChem; 2018 Jul; 11(13):2221-2228. PubMed ID: 29766662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.
    Bowen CH; Bonin J; Kogler A; Barba-Ostria C; Zhang F
    ACS Synth Biol; 2016 Mar; 5(3):200-6. PubMed ID: 26669968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocatalytic conversion of cycloalkanes to lactones using an in-vivo cascade in Pseudomonas taiwanensis VLB120.
    Karande R; Salamanca D; Schmid A; Buehler K
    Biotechnol Bioeng; 2018 Feb; 115(2):312-320. PubMed ID: 28986995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency production of 5-aminovalerate in engineered Escherichia coli controlled by an anaerobically-induced nirB promoter.
    Cheng J; Tu W; Cao R; Gou X; Zhang Y; Wang D; Li Q
    Biochem Biophys Res Commun; 2021 May; 552():170-175. PubMed ID: 33751934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids.
    Cao Y; Cao Y; Lin X
    J Ind Microbiol Biotechnol; 2011 Jun; 38(6):649-56. PubMed ID: 21113642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.