These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 33028853)

  • 1. Quantum transport in a chain of quantum dots with inhomogeneous size distribution and manifestation of 1D Anderson localization.
    Cha MH; Hwang J
    Sci Rep; 2020 Oct; 10(1):16701. PubMed ID: 33028853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.
    Ma YJ; Zhong Z; Yang XJ; Fan YL; Jiang ZM
    Nanotechnology; 2013 Jan; 24(1):015304. PubMed ID: 23220787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of coupled three-dimensional Ge quantum dot crystals.
    Ma Y; Zhong Z; Lv Q; Qiu W; Wang X; Zhou T; Fan Y; Jiang Z
    Opt Express; 2013 Mar; 21(5):6053-60. PubMed ID: 23482173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules.
    Song N; Zhu H; Jin S; Zhan W; Lian T
    ACS Nano; 2011 Jan; 5(1):613-21. PubMed ID: 21190376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaching Disordered Quantum Dot Systems by Complex Networks with Spatial and Physical-Based Constraints.
    Cuadra L; Nieto-Borge JC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled InGaAs quantum dot clusters with controlled spatial and spectral properties.
    Creasey M; Lee JH; Wang Z; Salamo GJ; Li X
    Nano Lett; 2012 Oct; 12(10):5169-74. PubMed ID: 22992172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport.
    Carrigan CN; Bartlett RD; Esslinger CS; Cybulski KA; Tongcharoensirikul P; Bridges RJ; Thompson CM
    J Med Chem; 2002 May; 45(11):2260-76. PubMed ID: 12014964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral interdot carrier transfer in an InAs quantum dot cluster grown on a pyramidal GaAs surface.
    Liang BL; Wong PS; Pavarelli N; Tatebayashi J; Ochalski TJ; Huyet G; Huffaker DL
    Nanotechnology; 2011 Feb; 22(5):055706. PubMed ID: 21178233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-ZnO alternating quantum dot chains: electrostatic adsorption assembly and white light-emitting device application.
    Liu KK; Li XM; Cheng SB; Zhou R; Liang YC; Dong L; Shan CX; Zeng HB; Shen DZ
    Nanoscale; 2018 Apr; 10(15):7155-7162. PubMed ID: 29620110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InAs quantum dot clusters grown on GaAs droplet templates: surface morphologies and optical properties.
    Liang BL; Dorogan VG; Mazur YI; Strom NW; Lee JH; Sablon KA; Wang ZhM; Salamo GJ
    J Nanosci Nanotechnol; 2009 May; 9(5):3320-4. PubMed ID: 19453010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic localization in quantum dots: analytical theory.
    Basko DM; Skvortsov MA; Kravtsov VE
    Phys Rev Lett; 2003 Mar; 90(9):096801. PubMed ID: 12689247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady state conductance in a double quantum dot array: the nonequilibrium equation-of-motion Green function approach.
    Levy TJ; Rabani E
    J Chem Phys; 2013 Apr; 138(16):164125. PubMed ID: 23635129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.
    Shen J; Song Y; Lee ML; Cha JJ
    Nanotechnology; 2014 Nov; 25(46):465702. PubMed ID: 25354930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Anderson-Josephson quantum dot-a theory perspective.
    Meden V
    J Phys Condens Matter; 2019 Apr; 31(16):163001. PubMed ID: 30630142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Markovian kinetic equation approach to electron transport through a quantum dot coupled to superconducting leads.
    Kosov DS; Prosen T; Žunkovič B
    J Phys Condens Matter; 2013 Feb; 25(7):075702. PubMed ID: 23341443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transport in isotopically disordered carbon nanotubes: a comparison between Green's functions and Boltzmann approaches.
    Stoltz G; Lazzeri M; Mauri F
    J Phys Condens Matter; 2009 Jun; 21(24):245302. PubMed ID: 21693942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massively parallel classical logic via coherent dynamics of an ensemble of quantum systems with dispersion in size.
    Gattuso H; Levine RD; Remacle F
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21022-21030. PubMed ID: 32817545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission and scarring in graphene quantum dots.
    Huang L; Lai YC; Ferry DK; Akis R; Goodnick SM
    J Phys Condens Matter; 2009 Aug; 21(34):344203. PubMed ID: 21715778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between structure, stoichiometry, and electron transfer dynamics in SILAR-based quantum dot-sensitized oxides.
    Wang H; Barceló I; Lana-Villarreal T; Gómez R; Bonn M; Cánovas E
    Nano Lett; 2014 Oct; 14(10):5780-6. PubMed ID: 25238147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance and phase shift in an open Aharonov-Bohm ring with an embedded quantum dot.
    Hedin ER; Joe YS; Satanin AM
    J Phys Condens Matter; 2009 Jan; 21(1):015303. PubMed ID: 21817218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.