BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33028946)

  • 1. The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry.
    Ochmian I; Błaszak M; Lachowicz S; Piwowarczyk R
    Sci Rep; 2020 Oct; 10(1):16696. PubMed ID: 33028946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hot water treatments on quality of highbush blueberries.
    Fan L; Forney CF; Song J; Doucette C; Jordan MA; McRae KB; Walker BA
    J Food Sci; 2008 Aug; 73(6):M292-7. PubMed ID: 19241561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of thermal treatment on the stability of phenolic compounds and the microbiological quality of sucrose solution following osmotic dehydration of highbush blueberry fruits.
    Kucner A; Papiewska A; Klewicki R; Sójka M; Klewicka E
    Acta Sci Pol Technol Aliment; 2014; 13(1):79-88. PubMed ID: 24724213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the impact of innovative fertilization methods compared to traditional fertilization in the cultivation of highbush blueberry.
    Lenart A; Wrona D; Klimek K; Kapłan M; Krupa T
    PLoS One; 2022; 17(7):e0271383. PubMed ID: 35857812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage.
    Connor AM; Luby JJ; Hancock JF; Berkheimer S; Hanson EJ
    J Agric Food Chem; 2002 Feb; 50(4):893-8. PubMed ID: 11829664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin treatment reduces qualitative decay and improves antioxidant system in highbush blueberry fruit during cold storage.
    Magri A; Petriccione M
    J Sci Food Agric; 2022 Aug; 102(10):4229-4237. PubMed ID: 35023584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage.
    Ji Y; Hu W; Liao J; Jiang A; Xiu Z; Gaowa S; Guan Y; Yang X; Feng K; Liu C
    J Sci Food Agric; 2020 Dec; 100(15):5586-5595. PubMed ID: 32608515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yield and nutritional quality of highbush blueberry genotypes trialled in a Mediterranean hot summer climate.
    Mazzoni L; Balducci F; Di Vittori L; Scalzo J; Capocasa F; Zhong CF; Forbes-Hernandez TY; Giampieri F; Battino M; Mezzetti B
    J Sci Food Agric; 2020 Jul; 100(9):3675-3686. PubMed ID: 32240546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of polysaccharide-based edible coatings as carriers of prebiotic fibers on quality attributes of ready-to-eat fresh blueberries.
    Alvarez MV; Ponce AG; Moreira MR
    J Sci Food Agric; 2018 May; 98(7):2587-2597. PubMed ID: 29065223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ethylene absorbent treatment on the softening of blueberry fruit.
    Wang S; Zhou Q; Zhou X; Wei B; Ji S
    Food Chem; 2018 Apr; 246():286-294. PubMed ID: 29291851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quality changes of highbush blueberries fruit stored in CA with different CO levels.
    Duarte C; Guerra M; Daniel P; Camelo AL; Yommi A
    J Food Sci; 2009; 74(4):S154-9. PubMed ID: 19490342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries.
    Sun X; Narciso J; Wang Z; Ference C; Bai J; Zhou K
    J Food Sci; 2014 May; 79(5):M955-60. PubMed ID: 24734914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oviposition efficacy of Drosophila suzukii (Diptera: Drosophilidae) on different cultivars of blueberry.
    Kinjo H; Kunimi Y; Ban T; Nakai M
    J Econ Entomol; 2013 Aug; 106(4):1767-71. PubMed ID: 24020291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.
    Stewart JE; Brooks K; Brannen PM; Cline WO; Brewer MT
    PLoS One; 2015; 10(7):e0132545. PubMed ID: 26207812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential Impact of Populations Drift on Botrytis Occurrence and Resistance to Multi- and Single-Site Fungicides in Florida Southern Highbush Blueberry Fields.
    Amiri A; Zuniga AI; Peres NA
    Plant Dis; 2018 Nov; 102(11):2142-2148. PubMed ID: 30169135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of production systems on phenolic characteristics and antioxidant capacity of highbush blueberry cultivars.
    Jung YS; Kwak IA; Lee SG; Cho HS; Cho YS; Kim DO
    J Food Sci; 2021 Jul; 86(7):2949-2961. PubMed ID: 34146400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface.
    Kim TJ; Corbitt MP; Silva JL; Wang DS; Jung YS; Spencer B
    J Food Sci; 2011 Aug; 76(6):M353-60. PubMed ID: 21623784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exobasidium maculosum, a new species causing leaf and fruit spots on blueberry in the southeastern USA and its relationship with other Exobasidium spp. parasitic to blueberry and cranberry.
    Brewer MT; Turner AN; Brannen PM; Cline WO; Richardson EA
    Mycologia; 2014; 106(3):415-23. PubMed ID: 24871592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage.
    Mannozzi C; Tylewicz U; Chinnici F; Siroli L; Rocculi P; Dalla Rosa M; Romani S
    Food Chem; 2018 Jun; 251():18-24. PubMed ID: 29426419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes.
    Lacombe A; Niemira BA; Gurtler JB; Fan X; Sites J; Boyd G; Chen H
    Food Microbiol; 2015 Apr; 46():479-484. PubMed ID: 25475318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.