These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33029554)

  • 1. Localized Induction of Gene Expression in Embryonic Stem Cell Aggregates Using Holographic Optical Tweezers to Create Biochemical Gradients.
    Kirkham GR; Ware J; Upton T; Allen S; Shakesheff KM; Buttery LD
    Regen Eng Transl Med; 2020; 6(3):251-261. PubMed ID: 33029554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision assembly of complex cellular microenvironments using holographic optical tweezers.
    Kirkham GR; Britchford E; Upton T; Ware J; Gibson GM; Devaud Y; Ehrbar M; Padgett M; Allen S; Buttery LD; Shakesheff K
    Sci Rep; 2015 Feb; 5():8577. PubMed ID: 25716032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of definable number of drug or growth factor loaded poly(DL-lactic acid-co-glycolic acid) microparticles within human embryonic stem cell derived aggregates.
    Qutachi O; Shakesheff KM; Buttery LD
    J Control Release; 2013 May; 168(1):18-27. PubMed ID: 23500059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic-based patterning of embryonic stem cells for in vitro development studies.
    Suri S; Singh A; Nguyen AH; Bratt-Leal AM; McDevitt TC; Lu H
    Lab Chip; 2013 Dec; 13(23):4617-24. PubMed ID: 24113509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.
    Bajaj P; Marchwiany D; Duarte C; Bashir R
    Adv Healthc Mater; 2013 Mar; 2(3):450-8. PubMed ID: 23463644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules.
    Carpenedo RL; Bratt-Leal AM; Marklein RA; Seaman SA; Bowen NJ; McDonald JF; McDevitt TC
    Biomaterials; 2009 May; 30(13):2507-15. PubMed ID: 19162317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of 3D Cellular Composites with Stem Cells Derived from Adipose Tissue and Endothelial Cells by Use of Optical Tweezers in a Natural Polymer Solution.
    Yamazaki T; Kishimoto T; LeszczyƄski P; Sadakane K; Kenmotsu T; Watanabe H; Kazama T; Matsumoto T; Yoshikawa K; Taniguchi H
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31151204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.
    Ouyang L; Yao R; Mao S; Chen X; Na J; Sun W
    Biofabrication; 2015 Nov; 7(4):044101. PubMed ID: 26531008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microparticle approach for non-viral gene delivery within 3D human mesenchymal stromal cell aggregates.
    Khalil AS; Yu X; Dang PN; Alsberg E; Murphy WL
    Acta Biomater; 2019 Sep; 95():408-417. PubMed ID: 31004846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet microarray: miniaturized platform for rapid formation and high-throughput screening of embryoid bodies.
    Tronser T; Demir K; Reischl M; Bastmeyer M; Levkin PA
    Lab Chip; 2018 Jul; 18(15):2257-2269. PubMed ID: 29978866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid.
    Wobus AM; Rohwedel J; Maltsev V; Hescheler J
    Rouxs Arch Dev Biol; 1994 Oct; 204(1):36-45. PubMed ID: 28305804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microparticle approach to morphogen delivery within pluripotent stem cell aggregates.
    Bratt-Leal AM; Nguyen AH; Hammersmith KA; Singh A; McDevitt TC
    Biomaterials; 2013 Oct; 34(30):7227-35. PubMed ID: 23827184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioassembly of three-dimensional embryonic stem cell-scaffold complexes using compressed gases.
    Xie Y; Yang Y; Kang X; Li R; Volakis LI; Zhang X; Lee LJ; Kniss DA
    Biotechnol Prog; 2009; 25(2):535-42. PubMed ID: 19334083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D manipulation of particles into crystal structures using holographic optical tweezers.
    Leach J; Sinclair G; Jordan P; Courtial J; Padgett M; Cooper J; Laczik Z
    Opt Express; 2004 Jan; 12(1):220-6. PubMed ID: 19471528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holographic acoustic tweezers.
    Marzo A; Drinkwater BW
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):84-89. PubMed ID: 30559177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-order free holographic optical tweezers.
    Yun X; Liang Y; He M; Guo L; Zhang X; Zhao T; Bianco PR; Lei M
    Opt Express; 2023 Jun; 31(12):19613-19621. PubMed ID: 37381372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates.
    Qi H; Huang G; Han YL; Lin W; Li X; Wang S; Lu TJ; Xu F
    Crit Rev Biotechnol; 2016; 36(1):20-31. PubMed ID: 25025275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.