These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33030174)

  • 21. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.
    Li H; Chen YQ; Chen S; Wang XL; Guo S; Qiu YF; Liu YD; Duan XL; Yu YJ
    PLoS One; 2017; 12(3):e0172337. PubMed ID: 28264061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced adsorption of antimonate by ball-milled microscale zero valent iron/pyrite composite: adsorption properties and mechanism insight.
    He X; Min X; Peng T; Ke Y; Zhao F; Sillanpää M; Wang Y
    Environ Sci Pollut Res Int; 2020 May; 27(14):16484-16495. PubMed ID: 32124299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Environ Sci Technol; 2004 May; 38(10):2879-84. PubMed ID: 15212263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron and organo-bentonite for the reduction and sorption of trichloroethylene.
    Cho HH; Lee T; Hwang SJ; Park JW
    Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfidation of Nano Zerovalent Iron (nZVI) for Improved Selectivity During In-Situ Chemical Reduction (ISCR).
    Fan D; O'Brien Johnson G; Tratnyek PG; Johnson RL
    Environ Sci Technol; 2016 Sep; 50(17):9558-65. PubMed ID: 27454131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron.
    Lv D; Zhou J; Cao Z; Xu J; Liu Y; Li Y; Yang K; Lou Z; Lou L; Xu X
    Chemosphere; 2019 Jun; 224():306-315. PubMed ID: 30844587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron.
    Dong H; Ahmad K; Zeng G; Li Z; Chen G; He Q; Xie Y; Wu Y; Zhao F; Zeng Y
    Environ Pollut; 2016 Apr; 211():363-9. PubMed ID: 26796746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced trichloroethylene dechlorination by carbon-modified zero-valent iron: Revisiting the role of carbon additives.
    Guan X; Du X; Liu M; Qin H; Qiao J; Sun Y
    J Hazard Mater; 2020 Jul; 394():122564. PubMed ID: 32244144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).
    Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D
    Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation and dissociation of CO2 on the (001), (011), and (111) surfaces of mackinawite (FeS): A dispersion-corrected DFT study.
    Dzade NY; Roldan A; de Leeuw NH
    J Chem Phys; 2015 Sep; 143(9):094703. PubMed ID: 26342379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation.
    Velimirovic M; Schmid D; Wagner S; Micić V; von der Kammer F; Hofmann T
    Sci Total Environ; 2016 Sep; 563-564():713-23. PubMed ID: 26596889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater.
    Sheu YT; Chen SC; Chien CC; Chen CC; Kao CM
    J Hazard Mater; 2015 Mar; 284():222-32. PubMed ID: 25463237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immobilization of uranium(VI) in a cementitious matrix with nanoscale zerovalent iron (NZVI).
    Sihn Y; Bae S; Lee W
    Chemosphere; 2019 Jan; 215():626-633. PubMed ID: 30347357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of trichloroethene (TCE) dechlorination in seawater over a granulated zero-valent iron.
    Shih YJ; Hsia KF; Chen CW; Chen CF; Dong CD
    Chemosphere; 2019 Feb; 216():40-47. PubMed ID: 30359915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.
    Min JE; Kim M; Pardue JH; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):144-53. PubMed ID: 18172806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.
    Xin J; Han J; Zheng X; Shao H; Kolditz O
    J Environ Manage; 2015 Mar; 150():420-426. PubMed ID: 25556871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Oxidative and Adsorptive Removal of Diclofenac in Heterogeneous Fenton-like Reaction with Sulfide Modified Nanoscale Zerovalent Iron.
    Su Y; Jassby D; Song S; Zhou X; Zhao H; Filip J; Petala E; Zhang Y
    Environ Sci Technol; 2018 Jun; 52(11):6466-6475. PubMed ID: 29767520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.
    Tseng HH; Su JG; Liang C
    J Hazard Mater; 2011 Aug; 192(2):500-6. PubMed ID: 21676545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.