These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33030174)

  • 41. Efficient novel amphiphilic double shells layer coupled with nanoscale zero-valent composite for the degradation of trichloroethylene.
    Li C; Lu Q; Zhan C; Tariq M; Huang K; Liu F; Zhu F; Liu G; Cui C; Lin K
    Sci Total Environ; 2019 Apr; 659():821-827. PubMed ID: 31096412
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency.
    Velimirovic M; Auffan M; Carniato L; Micić Batka V; Schmid D; Wagner S; Borschneck D; Proux O; von der Kammer F; Hofmann T
    Sci Total Environ; 2018 Mar; 618():1619-1627. PubMed ID: 29111242
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.
    Ahmad A; Gu X; Li L; Lv S; Xu Y; Guo X
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17876-85. PubMed ID: 26162447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced reactivity and mechanisms of mesoporous carbon supported zero-valent iron composite for trichloroethylene removal in batch studies.
    Cheng Y; Zhou W; Zhu L
    Sci Total Environ; 2020 May; 718():137256. PubMed ID: 32086086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of new materials by ethylene glycol modification and Al(OH)
    Zhang J; Zhu Q; Xing Z
    J Hazard Mater; 2020 May; 390():122049. PubMed ID: 32007862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of pH on dechlorination of trichloroethylene by zero-valent iron.
    Chen JL; Al-Abed SR; Ryan JA; Li Z
    J Hazard Mater; 2001 May; 83(3):243-54. PubMed ID: 11348735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.
    Liu Y; Phenrat T; Lowry GV
    Environ Sci Technol; 2007 Nov; 41(22):7881-7. PubMed ID: 18075103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Research on the Effect of Carbon Defects on the Hydrophilicity of Coal Pyrite Surface from the Insight of Quantum Chemistry.
    Xi P; Ma R; Liu W
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31248219
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DFT Study into the Influence of Carbon Material on the Hydrophobicity of a Coal Pyrite Surface.
    Xi P; Wang D; Liu W; Shi C
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31574908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar.
    Liu Y; Sohi SP; Liu S; Guan J; Zhou J; Chen J
    J Environ Manage; 2019 Apr; 235():276-281. PubMed ID: 30685583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant--a column study.
    Li Z; Willms C; Alley J; Zhang P; Bowman RS
    Water Res; 2006 Dec; 40(20):3811-9. PubMed ID: 17055029
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Density functional theory studies of chloroethene adsorption on zerovalent iron.
    Lim DH; Lastoskie CM; Soon A; Becker U
    Environ Sci Technol; 2009 Feb; 43(4):1192-8. PubMed ID: 19320179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.
    Su YF; Cheng YL; Shih YH
    J Environ Manage; 2013 Nov; 129():361-6. PubMed ID: 23994578
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron.
    Prommer H; Aziz LH; Bolaño N; Taubald H; Schüth C
    J Contam Hydrol; 2008 Apr; 97(1-2):13-26. PubMed ID: 18267347
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization.
    Zhang W; Qian L; Ouyang D; Chen Y; Han L; Chen M
    Chemosphere; 2019 Apr; 221():683-692. PubMed ID: 30669110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters.
    Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N
    Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.