These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 33030193)

  • 1. Unfolding mechanism and free energy landscape of single, stable, alpha helices at low pull speeds.
    Bergues-Pupo AE; Lipowsky R; Vila Verde A
    Soft Matter; 2020 Nov; 16(43):9917-9928. PubMed ID: 33030193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical unfolding of alpha- and beta-helical protein motifs.
    DeBenedictis EP; Keten S
    Soft Matter; 2019 Feb; 15(6):1243-1252. PubMed ID: 30604826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axis-dependent anisotropy in protein unfolding from integrated nonequilibrium single-molecule experiments, analysis, and simulation.
    Nome RA; Zhao JM; Hoff WD; Scherer NF
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20799-804. PubMed ID: 18093935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-sheet-like formation during the mechanical unfolding of prion protein.
    Tao W; Yoon G; Cao P; Eom K; Park HS
    J Chem Phys; 2015 Sep; 143(12):125101. PubMed ID: 26429042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One Peptide Reveals the Two Faces of α-Helix Unfolding-Folding Dynamics.
    Jesus CSH; Cruz PF; Arnaut LG; Brito RMM; Serpa C
    J Phys Chem B; 2018 Apr; 122(14):3790-3800. PubMed ID: 29558133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of the Mechanical Unfolding Pathways of α- and β-Peptides.
    Uribe L; Gauss J; Diezemann G
    J Phys Chem B; 2015 Jul; 119(26):8313-20. PubMed ID: 26073785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics and structure of alanine-rich α-helices via adaptive steered molecular dynamics.
    Zhuang Y; Bureau HR; Lopez C; Bucher R; Quirk S; Hernandez R
    Biophys J; 2021 May; 120(10):2009-2018. PubMed ID: 33775636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed microscopic unfolding pathways of an α-helix and a β-hairpin: direct observation and molecular dynamics.
    Jas GS; Hegefeld WA; Middaugh CR; Johnson CK; Kuczera K
    J Phys Chem B; 2014 Jul; 118(26):7233-46. PubMed ID: 24897620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability.
    Wolny M; Batchelor M; Bartlett GJ; Baker EG; Kurzawa M; Knight PJ; Dougan L; Woolfson DN; Paci E; Peckham M
    Sci Rep; 2017 Mar; 7():44341. PubMed ID: 28287151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation exploration of unfolding and refolding of a ten-amino acid miniprotein.
    Zhao GJ; Cheng CL
    Amino Acids; 2012 Aug; 43(2):557-65. PubMed ID: 22113644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics.
    Jana K; Mehra R; Dehury B; Blundell TL; Kepp KP
    Proteins; 2020 Sep; 88(9):1233-1250. PubMed ID: 32368818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium structure and folding of a helix-forming peptide: circular dichroism measurements and replica-exchange molecular dynamics simulations.
    Jas GS; Kuczera K
    Biophys J; 2004 Dec; 87(6):3786-98. PubMed ID: 15339816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43).
    Prakash A; Kumar V; Meena NK; Hassan MI; Lynn AM
    J Biomol Struct Dyn; 2019 Jan; 37(1):178-194. PubMed ID: 29279008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of water-protein hydrogen bonding on the stability of Trp-cage miniprotein. A comparison between the TIP3P and TIP4P-Ew water models.
    Paschek D; Day R; García AE
    Phys Chem Chem Phys; 2011 Nov; 13(44):19840-7. PubMed ID: 21845272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical unfolding of a beta-hairpin using molecular dynamics.
    Bryant Z; Pande VS; Rokhsar DS
    Biophys J; 2000 Feb; 78(2):584-9. PubMed ID: 10653773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical unfolding of acylphosphatase studied by single-molecule force spectroscopy and MD simulations.
    Arad-Haase G; Chuartzman SG; Dagan S; Nevo R; Kouza M; Mai BK; Nguyen HT; Li MS; Reich Z
    Biophys J; 2010 Jul; 99(1):238-47. PubMed ID: 20655852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR hydrogen exchange of the OB-fold protein LysN as a function of denaturant: the most conserved elements of structure are the most stable to unfolding.
    Alexandrescu AT; Jaravine VA; Dames SA; Lamour FP
    J Mol Biol; 1999 Jun; 289(4):1041-54. PubMed ID: 10369781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting thermal and mechanical protein (un)folding landscapes.
    Sun L; Noel JK; Sulkowska JI; Levine H; Onuchic JN
    Biophys J; 2014 Dec; 107(12):2950-2961. PubMed ID: 25517160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Atomistic Simulations of Protein Unfolding in Low Speed Atomic Force Microscope and Force Clamp Experiments with the Help of Boxed Molecular Dynamics.
    Booth JJ; Shalashilin DV
    J Phys Chem B; 2016 Feb; 120(4):700-8. PubMed ID: 26760898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.