These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33030482)

  • 1. What determines the performance of lanthanide-based ratiometric nanothermometers?
    Jia M; Sun Z; Zhang M; Xu H; Fu Z
    Nanoscale; 2020 Oct; 12(40):20776-20785. PubMed ID: 33030482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive and Adjustable Nanothermometers Based on Er
    Grzyb T; Ryszczyńska S; Jurga N; Przybylska D; Martín IR
    ACS Appl Mater Interfaces; 2024 Oct; 16(41):55925-35. PubMed ID: 39363858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF
    Pominova D; Proydakova V; Romanishkin I; Ryabova A; Kuznetsov S; Uvarov O; Fedorov P; Loschenov V
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33050341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental and Excitation Power Effects on the Ratiometric Upconversion Luminescence Based Temperature Sensing Using Nanocrystalline NaYF
    Hyppänen I; Perälä N; Arppe R; Schäferling M; Soukka T
    Chemphyschem; 2017 Mar; 18(6):692-701. PubMed ID: 28071852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of rare-earth-doped infrared luminescent nanothermometers.
    Labrador-Páez L; Pedroni M; Speghini A; García-Solé J; Haro-González P; Jaque D
    Nanoscale; 2018 Dec; 10(47):22319-22328. PubMed ID: 30468230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α-NaYb(Mn)F4:Er(3+)/Tm(3+)@NaYF4 UCNPs as "Band-Shape" Luminescent Nanothermometers over a Wide Temperature Range.
    Xu X; Wang Z; Lei P; Yu Y; Yao S; Song S; Liu X; Su Y; Dong L; Feng J; Zhang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20813-9. PubMed ID: 26312746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate In Vivo Nanothermometry through NIR-II Lanthanide Luminescence Lifetime.
    Tan M; Li F; Cao N; Li H; Wang X; Zhang C; Jaque D; Chen G
    Small; 2020 Dec; 16(48):e2004118. PubMed ID: 33155363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing highly sensitive ratiometric nanothermometers based on indirectly thermally coupled levels.
    Wang Y; Lei L; Liu E; Cheng Y; Xu S
    Chem Commun (Camb); 2021 Sep; 57(72):9092-9095. PubMed ID: 34498630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications.
    Nexha A; Carvajal JJ; Pujol MC; Díaz F; Aguiló M
    Nanoscale; 2021 May; 13(17):7913-7987. PubMed ID: 33899861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensitive near infrared to near-infrared luminescence nanothermometer based on triple doped Ln -Y
    Porosnicu I; Colbea C; Baiasu F; Lungu M; Istrate MC; Avram D; Tiseanu C
    Methods Appl Fluoresc; 2020 Jul; 8(3):035005. PubMed ID: 32320952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shell Engineering on Thermal Sensitivity of Lifetime-Based NIR Nanothermometers for Accurate Temperature Measurement in Murine Internal Liver Organ.
    Wu L; Jia M; Li D; Chen G
    Nano Lett; 2023 Apr; 23(7):2862-2869. PubMed ID: 36926957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single multifunctional nanoplatform based on upconversion luminescence and gold nanorods.
    Huang Y; Rosei F; Vetrone F
    Nanoscale; 2015 Mar; 7(12):5178-85. PubMed ID: 25699524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive NIR-II Ratiometric Nanothermometers for 3D In Vivo Thermal Imaging.
    Li D; Jia M; Jia T; Chen G
    Adv Mater; 2024 Mar; 36(11):e2309452. PubMed ID: 38088453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NaYF
    Geitenbeek RG; Prins PT; Albrecht W; van Blaaderen A; Weckhuysen BM; Meijerink A
    J Phys Chem C Nanomater Interfaces; 2017 Feb; 121(6):3503-3510. PubMed ID: 28303168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimode high-sensitivity optical YVO
    Kolesnikov IE; Kurochkin MA; Golyeva EV; Mamonova DV; Kalinichev AA; Kolesnikov EY; Lähderanta E
    Phys Chem Chem Phys; 2020 Dec; 22(48):28183-28190. PubMed ID: 33291123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved relative temperature sensitivity of over 10% K
    Liu E; Lei L; Ye R; Deng D; Xu S
    Chem Commun (Camb); 2022 Aug; 58(65):9076-9079. PubMed ID: 35876695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving performance of luminescent nanothermometers based on non-thermally and thermally coupled levels of lanthanides by modulating laser power.
    Stopikowska N; Runowski M; Skwierczyńska M; Lis S
    Nanoscale; 2021 Sep; 13(33):14139-14146. PubMed ID: 34477695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Temperature-Sensing Performance of Nd
    Maciel GS; Bartra WL; Xing Y; Rakov N
    Chemphyschem; 2022 Jan; 23(2):e202100517. PubMed ID: 34747555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Ga
    Salerno EV; Zeler J; Eliseeva SV; Hernández-Rodríguez MA; Carneiro Neto AN; Petoud S; Pecoraro VL; Carlos LD
    Chemistry; 2020 Nov; 26(61):13792-13796. PubMed ID: 32663350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inherently Eu
    Pan Y; Xie X; Huang Q; Gao C; Wang Y; Wang L; Yang B; Su H; Huang L; Huang W
    Adv Mater; 2018 Apr; 30(14):e1705256. PubMed ID: 29430797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.