BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33030494)

  • 1. Nondestructive quantification of single-cell nuclear and cytoplasmic mechanical properties based on large whole-cell deformation.
    Ren J; Li Y; Hu S; Liu Y; Tsao SW; Lau D; Luo G; Tsang CM; Lam RHW
    Lab Chip; 2020 Nov; 20(22):4175-4185. PubMed ID: 33030494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elasticity-Modulated Microbeads for Classification of Floating Normal and Cancer Cells Using Confining Microchannels.
    Ren J; Li J; Li Y; Xiao P; Liu Y; Tsang CM; Tsao SW; Lau D; Chan KWY; Lam RHW
    ACS Biomater Sci Eng; 2019 Aug; 5(8):3889-3898. PubMed ID: 33438428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nucleus Bypasses Obstacles by Deforming Like a Drop with Surface Tension Mediated by Lamin A/C.
    Katiyar A; Zhang J; Antani JD; Yu Y; Scott KL; Lele PP; Reinhart-King CA; Sniadecki NJ; Roux KJ; Dickinson RB; Lele TP
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201248. PubMed ID: 35712768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration.
    Lee JS; Hale CM; Panorchan P; Khatau SB; George JP; Tseng Y; Stewart CL; Hodzic D; Wirtz D
    Biophys J; 2007 Oct; 93(7):2542-52. PubMed ID: 17631533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments.
    Davidson PM; Sliz J; Isermann P; Denais C; Lammerding J
    Integr Biol (Camb); 2015 Dec; 7(12):1534-46. PubMed ID: 26549481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing elasticity of largely deformed cells flowing along confining microchannels.
    Hu S; Wang R; Tsang CM; Tsao SW; Sun D; Lam RHW
    RSC Adv; 2018 Jan; 8(2):1030-1038. PubMed ID: 35538956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the nucleus to the mechanical properties of endothelial cells.
    Caille N; Thoumine O; Tardy Y; Meister JJ
    J Biomech; 2002 Feb; 35(2):177-87. PubMed ID: 11784536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the nucleus for cell mechanics: an elastic phase field approach.
    Chojowski R; Schwarz US; Ziebert F
    Soft Matter; 2024 Jun; 20(22):4488-4503. PubMed ID: 38804018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes.
    Buxboim A; Irianto J; Swift J; Athirasala A; Shin JW; Rehfeldt F; Discher DE
    Mol Biol Cell; 2017 Nov; 28(23):3333-3348. PubMed ID: 28931598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.
    Stephens AD; Banigan EJ; Adam SA; Goldman RD; Marko JF
    Mol Biol Cell; 2017 Jul; 28(14):1984-1996. PubMed ID: 28057760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanics in human fibroblasts and progeria: Lamin A mutation E145K results in stiffening of nuclei.
    Apte K; Stick R; Radmacher M
    J Mol Recognit; 2017 Feb; 30(2):. PubMed ID: 27677907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay.
    Deveraux S; Allena R; Aubry D
    J Theor Biol; 2017 Dec; 435():62-77. PubMed ID: 28919399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels.
    Scianna M; Preziosi L
    J Theor Biol; 2013 Jan; 317():394-406. PubMed ID: 23147234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies.
    Antmen E; Demirci U; Hasirci V
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110402. PubMed ID: 31398621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates.
    Versaevel M; Riaz M; Corne T; Grevesse T; Lantoine J; Mohammed D; Bruyère C; Alaimo L; De Vos WH; Gabriele S
    Cell Adh Migr; 2017 Jan; 11(1):98-109. PubMed ID: 27111836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local, transient tensile stress on the nuclear membrane causes membrane rupture.
    Zhang Q; Tamashunas AC; Agrawal A; Torbati M; Katiyar A; Dickinson RB; Lammerding J; Lele TP
    Mol Biol Cell; 2019 Mar; 30(7):899-906. PubMed ID: 30566037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics.
    Hobson CM; Kern M; O'Brien ET; Stephens AD; Falvo MR; Superfine R
    Mol Biol Cell; 2020 Jul; 31(16):1788-1801. PubMed ID: 32267206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing compressibility of the nuclear interior in wild-type and lamin deficient cells using microscopic imaging and computational modeling.
    González Avalos P; Reichenzeller M; Eils R; Gladilin E
    J Biomech; 2011 Oct; 44(15):2642-8. PubMed ID: 21906741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optomechanical measurement of the role of lamins in whole cell deformability.
    Kolb T; Kraxner J; Skodzek K; Haug M; Crawford D; Maaß KK; Aifantis KE; Whyte G
    J Biophotonics; 2017 Dec; 10(12):1657-1664. PubMed ID: 28485113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.