These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 33030810)

  • 21. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.
    Xie J; Xie Y
    Chemistry; 2016 Mar; 22(11):3588-98. PubMed ID: 26494184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrocatalytic Metal-Organic Frameworks for Energy Applications.
    Downes CA; Marinescu SC
    ChemSusChem; 2017 Nov; 10(22):4374-4392. PubMed ID: 28968485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction.
    Wan K; Chu T; Li B; Ming P; Zhang C
    Adv Sci (Weinh); 2023 Apr; 10(11):e2203391. PubMed ID: 36717282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy.
    Wang J; Liao T; Wei Z; Sun J; Guo J; Sun Z
    Small Methods; 2021 Apr; 5(4):e2000988. PubMed ID: 34927849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled Synthesis and Structure Engineering of Transition Metal-based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zinc-Air Battery and Water-Splitting Devices.
    Zhang Z; Zhang H; Yao Y; Wang J; Guo H; Deng Y; Han X
    ChemSusChem; 2021 Apr; 14(7):1659-1673. PubMed ID: 33565262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition Metal and Nitrogen Co-Doped Carbon-based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures.
    Wang D; Pan X; Yang P; Li R; Xu H; Li Y; Meng F; Zhang J; An M
    ChemSusChem; 2021 Jan; 14(1):33-55. PubMed ID: 33078564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review.
    Weng CC; Ren JT; Yuan ZY
    ChemSusChem; 2020 Jul; 13(13):3357-3375. PubMed ID: 32196958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media.
    Yu J; Le TA; Tran NQ; Lee H
    Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion.
    Lim KRG; Handoko AD; Nemani SK; Wyatt B; Jiang HY; Tang J; Anasori B; Seh ZW
    ACS Nano; 2020 Sep; 14(9):10834-10864. PubMed ID: 32790329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic and Structural Engineering of Carbon-Based Metal-Free Electrocatalysts for Water Splitting.
    Wang X; Vasileff A; Jiao Y; Zheng Y; Qiao SZ
    Adv Mater; 2019 Mar; 31(13):e1803625. PubMed ID: 30276904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide.
    Zhao H; Yuan ZY
    ChemSusChem; 2021 Apr; 14(7):1616-1633. PubMed ID: 33587818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions.
    Park J; Kwon T; Kim J; Jin H; Kim HY; Kim B; Joo SH; Lee K
    Chem Soc Rev; 2018 Nov; 47(22):8173-8202. PubMed ID: 30009297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multicomponent Metal Oxide- and Metal Hydroxide-Based Electrocatalysts for Alkaline Water Splitting.
    Lee G; Jun SE; Kim Y; Park IH; Jang HW; Park SH; Kwon KC
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis.
    Song Y; Xu B; Liao T; Guo J; Wu Y; Sun Z
    Small; 2021 Mar; 17(9):e2002240. PubMed ID: 32851763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mixed transition-metal oxides: design, synthesis, and energy-related applications.
    Yuan C; Wu HB; Xie Y; Lou XW
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1488-504. PubMed ID: 24382683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage.
    Sheng T; Xu YF; Jiang YX; Huang L; Tian N; Zhou ZY; Broadwell I; Sun SG
    Acc Chem Res; 2016 Nov; 49(11):2569-2577. PubMed ID: 27739662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lithium Electrochemical Tuning for Electrocatalysis.
    Lu Z; Jiang K; Chen G; Wang H; Cui Y
    Adv Mater; 2018 Nov; 30(48):e1800978. PubMed ID: 30203515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media.
    Qian Y; Khan IA; Zhao D
    Small; 2017 Oct; 13(37):. PubMed ID: 28752934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications.
    Do VH; Lee JM
    ACS Nano; 2022 Nov; 16(11):17847-17890. PubMed ID: 36314471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Layered-Double-Hydroxides Based Noble Metal Nanoparticles Efficient Electrocatalysts.
    Zhang Z; Li P; Zhang X; Hu C; Li Y; Yu B; Zeng N; Lv C; Song J; Li M
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.