BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 33030891)

  • 1. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments.
    Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B
    Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine.
    Zhang S; Wu D; Wu J; Xia Q; Jia X; Song X; Zeng L; Yuan Y
    Talanta; 2019 Nov; 204():747-752. PubMed ID: 31357361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells.
    Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y
    Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ICT-modulated NIR water-soluble fluorescent probe with large Stokes shift for selective detection of cysteine in living cells and zebrafish.
    Hou X; Li Z; Li Y; Zhou Q; Liu C; Fan D; Wang J; Xu R; Xu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119030. PubMed ID: 33049474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Selective Two-Photon Fluorescent Probe for Ratiometric Sensing and Imaging Cysteine in Mitochondria.
    Niu W; Guo L; Li Y; Shuang S; Dong C; Wong MS
    Anal Chem; 2016 Feb; 88(3):1908-14. PubMed ID: 26717855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells.
    Li X; Ma H; Qian J; Cao T; Teng Z; Iqbal K; Qin W; Guo H
    Talanta; 2019 Mar; 194():717-722. PubMed ID: 30609596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel benzothiazole-based fluorescent probe for cysteine detection and its application on test paper and in living cells.
    Yu Y; Xu H; Zhang W; Wang B; Jiang Y
    Talanta; 2018 Jan; 176():151-155. PubMed ID: 28917734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel colorimetric and ratiometric fluorescent probe for cysteine based on conjugate addition-cyclization-elimination strategy with a large Stokes shift and bioimaging in living cells.
    Zhu D; Yan X; Ren A; Xie W; Duan Z
    Anal Chim Acta; 2019 Jun; 1058():136-145. PubMed ID: 30851847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a near-infrared ratiometric fluorescent probe for glutathione using an intramolecular charge transfer signaling mechanism and its bioimaging application in living cells.
    Zhou Y; Zhang L; Zhang X; Zhu ZJ
    J Mater Chem B; 2019 Feb; 7(5):809-814. PubMed ID: 32254855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel fluorescent probe with red emission and a large Stokes shift for selective imaging of endogenous cysteine in living cells.
    Chen D; Long Z; Dang Y; Chen L
    Analyst; 2018 Nov; 143(23):5779-5784. PubMed ID: 30345996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift.
    Qi Y; Huang Y; Li B; Zeng F; Wu S
    Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A diazabenzoperylene derivative as ratiometric fluorescent probe for cysteine with super large Stokes shift.
    Wang S; Zhang Q; Chen S; Wang KP; Hu ZQ
    Anal Bioanal Chem; 2020 Apr; 412(11):2687-2696. PubMed ID: 32072211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe.
    Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ESIPT-induced NIR fluorescent probe to visualize mitochondrial sulfur dioxide during oxidative stress
    Ren H; Huo F; Wu X; Liu X; Yin C
    Chem Commun (Camb); 2021 Jan; 57(5):655-658. PubMed ID: 33346299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A near-infrared fluorescence turn-on probe based on Michael addition-intramolecular cyclization for specific detection of cysteine and its applications in environmental water and milk samples and living cells.
    Gao Z; Zhang L; Yan M; Liu H; Lu S; Lian H; Zhang P; Zhu J; Jin M
    Anal Methods; 2021 Nov; 13(44):5369-5376. PubMed ID: 34734940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-triggered NIR emission with a large stokes shift for the detection and imaging of cysteine in living cells.
    Zhao C; Li X; Wang F
    Chem Asian J; 2014 Jul; 9(7):1777-81. PubMed ID: 24807291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 2-(2'-hydroxyphenyl)benzothiazole (HBT)-quinoline conjugate: a highly specific fluorescent probe for Hg(2+) based on ESIPT and its application in bioimaging.
    Sahana S; Mishra G; Sivakumar S; Bharadwaj PK
    Dalton Trans; 2015 Dec; 44(46):20139-46. PubMed ID: 26531056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells.
    Cai S; Liu C; Jiao X; Zhao L; Zeng X
    J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-photon ratiometric fluorescent probe for highly selective sensing of mitochondrial cysteine in live cells.
    Fan L; Zhang W; Wang X; Dong W; Tong Y; Dong C; Shuang S
    Analyst; 2019 Jan; 144(2):439-447. PubMed ID: 30420979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel intramolecular charge transfer-based near-infrared fluorescent probe with large Stokes shift for highly sensitive detection of cysteine in vivo.
    Ding X; Yang B; Liu Z; Shen M; Fan Z; Wang X; Yu W
    Anal Chim Acta; 2023 Nov; 1280():341873. PubMed ID: 37858558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.