These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33030893)

  • 1. Facing the Challenges of Borderline Oxidation State Assignments Using State-of-the-Art Computational Methods.
    Gimferrer M; Van der Mynsbrugge J; Bell AT; Salvador P; Head-Gordon M
    Inorg Chem; 2020 Oct; 59(20):15410-15420. PubMed ID: 33030893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation State Localized Orbitals: A Method for Assigning Oxidation States Using Optimally Fragment-Localized Orbitals and a Fragment Orbital Localization Index.
    Gimferrer M; Aldossary A; Salvador P; Head-Gordon M
    J Chem Theory Comput; 2022 Jan; 18(1):309-322. PubMed ID: 34929084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innocence and noninnocence of the ligands in bis(pyrazine-2,3-dithiolate and -diselonate) d⁸-metal complexes. A theoretical and experimental study for the Cu(III), Au(III) and Ni(II) cases.
    Bruno G; Almeida M; Artizzu F; Dias JC; Mercuri ML; Pilia L; Rovira C; Ribas X; Serpe A; Deplano P
    Dalton Trans; 2010 May; 39(19):4566-74. PubMed ID: 20383385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LOBA: a localized orbital bonding analysis to calculate oxidation states, with application to a model water oxidation catalyst.
    Thom AJ; Sundstrom EJ; Head-Gordon M
    Phys Chem Chem Phys; 2009 Dec; 11(47):11297-304. PubMed ID: 20024398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seven Clues to Ligand Noninnocence: The Metallocorrole Paradigm.
    Ganguly S; Ghosh A
    Acc Chem Res; 2019 Jul; 52(7):2003-2014. PubMed ID: 31243969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Insights into the Oxidative and Reductive Quenching Cycles of Transition Metal Photoredox Catalysts through Effective Oxidation State Analysis.
    Medina E; Sandoval-Pauker C; Salvador P; Pinter B
    Inorg Chem; 2022 Nov; 61(47):18923-18933. PubMed ID: 36375089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dative and electron-sharing bonding in transition metal compounds.
    Jerabek P; Schwerdtfeger P; Frenking G
    J Comput Chem; 2019 Jan; 40(1):247-264. PubMed ID: 30365176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Not Guilty on Every Count: The "Non-Innocent" Nitrosyl Ligand in the Framework of IUPAC's Oxidation-State Formalism.
    Ampßler T; Monsch G; Popp J; Riggenmann T; Salvador P; Schröder D; Klüfers P
    Angew Chem Int Ed Engl; 2020 Jul; 59(30):12381-12386. PubMed ID: 32339395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scrutinizing the Noninnocence of Quinone Ligands in Ruthenium Complexes: Insights from Structural, Electronic, Energy, and Effective Oxidation State Analyses.
    Skara G; Gimferrer M; De Proft F; Salvador P; Pinter B
    Inorg Chem; 2016 Mar; 55(5):2185-99. PubMed ID: 26866981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adventures with substances containing metals in negative oxidation states.
    Ellis JE
    Inorg Chem; 2006 Apr; 45(8):3167-86. PubMed ID: 16602773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and determination of the {Fe(NO)(2)} core vibrational features in dinitrosyl-iron complexes from experiment, normal coordinate analysis, and density functional theory: an avenue for probing the nitric oxide oxidation state.
    Dai RJ; Ke SC
    J Phys Chem B; 2007 Mar; 111(9):2335-46. PubMed ID: 17295535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metrical oxidation states of 2-amidophenoxide and catecholate ligands: structural signatures of metal-ligand π bonding in potentially noninnocent ligands.
    Brown SN
    Inorg Chem; 2012 Feb; 51(3):1251-60. PubMed ID: 22260321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Characterization of Redox Non-Innocence in Cobalt-Bis(Diaryldithiolene)-Catalyzed Proton Reduction.
    Panetier JA; Letko CS; Tilley TD; Head-Gordon M
    J Chem Theory Comput; 2016 Jan; 12(1):223-30. PubMed ID: 26598074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation.
    Dzik WI; Zhang XP; de Bruin B
    Inorg Chem; 2011 Oct; 50(20):9896-903. PubMed ID: 21520926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. σ-Noninnocence: Masked Phenyl-Cation Transfer at Formal Ni
    Steen JS; Knizia G; Klein JEMN
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):13133-13139. PubMed ID: 31206937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crucial role of dispersion in the cohesion of nonbridged binuclear Os --> Cr and Os --> W adducts.
    Grimme S; Djukic JP
    Inorg Chem; 2010 Mar; 49(6):2911-9. PubMed ID: 20143784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Configuring bonds between first-row transition metals.
    Eisenhart RJ; Clouston LJ; Lu CC
    Acc Chem Res; 2015 Nov; 48(11):2885-94. PubMed ID: 26492331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields.
    Hoffmann R; Alvarez S; Mealli C; Falceto A; Cahill TJ; Zeng T; Manca G
    Chem Rev; 2016 Jul; 116(14):8173-92. PubMed ID: 27398715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-valent transition metal centers versus noninnocent ligands in metallocorroles: insights from electrochemistry and implications for high-valent heme protein intermediates.
    Ghosh A; Steene E
    J Inorg Biochem; 2002 Aug; 91(3):423-36. PubMed ID: 12175935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.