These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33030999)

  • 1. ISREA: An Efficient Peak-Preserving Baseline Correction Algorithm for Raman Spectra.
    Xu Y; Du P; Senger R; Robertson J; Pirkle JL
    Appl Spectrosc; 2021 Jan; 75(1):34-45. PubMed ID: 33030999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baseline Correction Based on a Search Algorithm from Artificial Intelligence.
    Wang X; Chen X
    Appl Spectrosc; 2021 May; 75(5):531-544. PubMed ID: 33215516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Automated Baseline Correction Method Based on Iterative Morphological Operations.
    Chen Y; Dai L
    Appl Spectrosc; 2018 May; 72(5):731-739. PubMed ID: 29254366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Baseline Correction Algorithm for Raman Spectroscopy Based on Non-Uniform B-Spline].
    Fan XG; Wang HT; Wang X; Xu YJ; Wang XF; Que J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):724-8. PubMed ID: 27400514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman Spectroscopic Detection and Quantification of Macro- and Microhematuria in Human Urine.
    Carswell W; Robertson JL; Senger RS
    Appl Spectrosc; 2022 Mar; 76(3):273-283. PubMed ID: 35102755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disease-Associated Multimolecular Signature in the Urine of Patients with Lyme Disease Detected Using Raman Spectroscopy and Chemometrics.
    Senger RS; Sayed Issa A; Agnor B; Talty J; Hollis A; Robertson JL
    Appl Spectrosc; 2022 Mar; 76(3):284-299. PubMed ID: 35102746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Adaptive EEMD residue related baseline correction algorithm].
    Zhan XY; Fang YM; Guan Y; Wang ZG; Tong L; Feng T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1624-8. PubMed ID: 25358176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Locally Dynamically Moving Average Algorithm for the Fully Automated Baseline Correction of Raman Spectrum].
    Gao PF; Yang R; Ji J; Guo HM; Hu Q; Zhuang SL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1281-5. PubMed ID: 26415444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Pre-Processing Algorithm Based on the Wavelet Transform for Raman Spectrum.
    Xi Y; Li Y; Duan Z; Lu Y
    Appl Spectrosc; 2018 Dec; 72(12):1752-1763. PubMed ID: 29972318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating complicated baselines in analytical signals using the iterative training of Bayesian regularized artificial neural networks.
    Mani-Varnosfaderani A; Kanginejad A; Gilany K; Valadkhani A
    Anal Chim Acta; 2016 Oct; 940():56-64. PubMed ID: 27662759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small-window moving average-based fully automated baseline estimation method for Raman spectra.
    Schulze HG; Foist RB; Okuda K; Ivanov A; Turner RF
    Appl Spectrosc; 2012 Jul; 66(7):757-64. PubMed ID: 22710274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric least squares for multiple spectra baseline correction.
    Peng J; Peng S; Jiang A; Wei J; Li C; Tan J
    Anal Chim Acta; 2010 Dec; 683(1):63-8. PubMed ID: 21094382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic baseline recognition for the correction of large sets of spectra using continuous wavelet transform and iterative fitting.
    Bertinetto CG; Vuorinen T
    Appl Spectrosc; 2014; 68(2):155-64. PubMed ID: 24624486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Effective Baseline Correction Algorithm Using Broad Gaussian Vectors for Chemical Agent Detection with Known Raman Signature Spectra.
    Yu HG; Park DJ; Chang DE; Nam H
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goldindec: A Novel Algorithm for Raman Spectrum Baseline Correction.
    Liu J; Sun J; Huang X; Li G; Liu B
    Appl Spectrosc; 2015 Jul; 69(7):834-42. PubMed ID: 26037638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Vancouver Raman Algorithm Based on Empirical Mode Decomposition for Denoising Biological Samples.
    León-Bejarano F; Méndez MO; Ramírez-Elías MG; Alba A
    Appl Spectrosc; 2019 Dec; 73(12):1436-1450. PubMed ID: 31411494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.
    Chen K; Zhang H; Wei H; Li Y
    Appl Opt; 2014 Aug; 53(24):5559-69. PubMed ID: 25321134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Background Subtraction of Raman Spectra Based on Iterative Polynomial Smoothing.
    Wang T; Dai L
    Appl Spectrosc; 2017 Jun; 71(6):1169-1179. PubMed ID: 27694430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baseline correction method based on improved asymmetrically reweighted penalized least squares for the Raman spectrum.
    Ye J; Tian Z; Wei H; Li Y
    Appl Opt; 2020 Dec; 59(34):10933-10943. PubMed ID: 33361915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Adaptive and Fully Automated Baseline Correction Method for Raman Spectroscopy Based on Morphological Operations and Mollification.
    Chen H; Xu W; Broderick NGR
    Appl Spectrosc; 2019 Mar; 73(3):284-293. PubMed ID: 30334459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.