These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 330314)

  • 21. Phage phi80psu3+-directed tyrosine tRNA synthesis in Escherichia coli: effects of T4 phage superinfection on tyrosine suppressor-gene transcription.
    Raab C; Gross HJ
    Eur J Biochem; 1974 Aug; 46(3):507-13. PubMed ID: 4604897
    [No Abstract]   [Full Text] [Related]  

  • 22. Transfer ribonucleic acid biosynthesis. Substrate specificity of ribonuclease P.
    Schmidt FJ; Seidman JG; Bock RM
    J Biol Chem; 1976 Apr; 251(8):2440-5. PubMed ID: 770465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A proline tRNA(CGG) gene encompassing the attachment site of temperate phage 16-3 is functional and convertible to suppressor tRNA.
    Blaha B; Semsey S; Ferenczi S; Csiszovszki Z; Papp PP; Orosz L
    Mol Microbiol; 2004 Nov; 54(3):742-54. PubMed ID: 15491364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature sensitive mutants of Escherichia coli for tRNA synthesis.
    Sakano H; Yamada S; Ikemura T; Shimura Y; Ozeki H
    Nucleic Acids Res; 1974 Mar; 1(3):355-71. PubMed ID: 10793671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Five steps in the conversion of a large precursor RNA into bacteriophage proline and serine transfer RNAs.
    Seidman JG; Barrell BG; McClain WH
    J Mol Biol; 1975 Dec; 99(4):733-60. PubMed ID: 175167
    [No Abstract]   [Full Text] [Related]  

  • 26. Identification of tRNA precursor molecules made by phage T4.
    Guthrie C; Seidman JG; Altman S; Barrell BG; Smith JD; McClain WH
    Nat New Biol; 1973 Nov; 246(149):6-11. PubMed ID: 4519024
    [No Abstract]   [Full Text] [Related]  

  • 27. An ochre suppressor of bacteriophage T4 that is associated with a transfer RNA.
    Comer MM; Guthrie C; McClain WH
    J Mol Biol; 1974 Dec; 90(4):665-76. PubMed ID: 4615176
    [No Abstract]   [Full Text] [Related]  

  • 28. Total synthesis of a tyrosine suppressor tRNA gene. XVIII. Biological activity and transcription, in vitro, of the cloned gene.
    Ryan MJ; Brown EL; Sekiya T; Küpper H; Khorana HG
    J Biol Chem; 1979 Jul; 254(13):5817-26. PubMed ID: 376520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies on polynucleotides. LXXXV. Partial purification of an amber supressor tRNA and studies on in vitro suppression.
    Söll D
    J Mol Biol; 1968 May; 34(1):175-87. PubMed ID: 4938541
    [No Abstract]   [Full Text] [Related]  

  • 30. An Escherichia coli ribonuclease which removes an extra nucleotide from a biosynthetic intermediate of bacteriophage T4 proline transfer RNA.
    Schmidt FJ; McClain WH
    Nucleic Acids Res; 1978 Nov; 5(11):4129-39. PubMed ID: 364422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial genetic factors controlling the suppression of T4 phage amber mutants. I. Suppression patterns of a collection of E. coli strains.
    Krieg RH; Stent GS
    Mol Gen Genet; 1968; 103(3):274-93. PubMed ID: 4890344
    [No Abstract]   [Full Text] [Related]  

  • 32. Transfer RNA biosynthesis: the nucleotide sequence of a precursor to serine and proline transfer RNAs.
    Barrell BG; Seidman JG; Guthrie C; McClain WH
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):413-6. PubMed ID: 4521813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ribonuclease D is not essential for the normal growth of Escherichia coli or bacteriophage T4 or for the biosynthesis of a T4 suppressor tRNA.
    Blouin RT; Zaniewski R; Deutscher MP
    J Biol Chem; 1983 Feb; 258(3):1423-6. PubMed ID: 6337139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of the transfer RNAs coded by T2, T4, and T6 bacteriophages.
    Desai SM; Weiss SB
    J Biol Chem; 1977 Jul; 252(14):4935-41. PubMed ID: 326783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteriophage T4 transfer RNA. I. Isolation and characterization of two-phage-coded nonsense suppressors.
    Wilson JH; Kells S
    J Mol Biol; 1972 Aug; 69(1):39-56. PubMed ID: 4560761
    [No Abstract]   [Full Text] [Related]  

  • 36. [Primary structure of proline tRNA of bacteriophage T5].
    Shliapnikov MG; Kaliman AV; Kriukov VM; Baev AA
    Bioorg Khim; 1987 Apr; 13(4):559-61. PubMed ID: 3649234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methionine and formylmethionine specific tRNAs coded by bacteriophage T5.
    Chen MJ; Shiau RP; Hwang LT; Vaughan J; Weiss SB
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):558-62. PubMed ID: 1091927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA.
    Schedl P; Primakoff P
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2091-5. PubMed ID: 4579013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The host-dependent restriction of growth of an RNA coliphage FI.
    Hirashima A; Furuse K; Watanabe I
    Microbiol Immunol; 1977 Oct; 21(10):563-71. PubMed ID: 339036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Letter: Apparent non-involvement of transfer RNA nucleotidyltransferase in the biosynthesis of Escherichia coli suppressor transfer RNAs.
    Morse JW; Deutscher MP
    J Mol Biol; 1975 Jun; 95(1):141-4. PubMed ID: 1097710
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.