These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33031823)

  • 1. Transient loss of membrane integrity following intracellular ice formation in dimethyl sulfoxide-treated hepatocyte and endothelial cell monolayers.
    William N; Acker JP
    Cryobiology; 2020 Dec; 97():217-221. PubMed ID: 33031823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryopreservation-induced delayed injury and cell-type-specific responses during the cryopreservation of endothelial cell monolayers.
    Yu M; Marquez-Curtis LA; Elliott JAW
    Cryobiology; 2024 Jun; 115():104857. PubMed ID: 38350589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular ice formation in confluent monolayers of human dental stem cells and membrane damage.
    Zhurova M; Woods EJ; Acker JP
    Cryobiology; 2010 Aug; 61(1):133-41. PubMed ID: 20599884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives.
    William N; Acker JP
    Cryobiology; 2020 Dec; 97():123-130. PubMed ID: 33007287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of supercooling and cell volume on intracellular ice formation.
    Prickett RC; Marquez-Curtis LA; Elliott JA; McGann LE
    Cryobiology; 2015 Apr; 70(2):156-63. PubMed ID: 25707695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryopreservation of human umbilical vein and porcine corneal endothelial cell monolayers.
    Eskandari N; Marquez-Curtis LA; McGann LE; Elliott JAW
    Cryobiology; 2018 Dec; 85():63-72. PubMed ID: 30292811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing Responses in DMSO-Based Cryopreservation of Human iPS Cells: Aggregates Versus Single Cells.
    Li R; Yu G; Azarin SM; Hubel A
    Tissue Eng Part C Methods; 2018 May; 24(5):289-299. PubMed ID: 29478388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of controlled ice nucleation on intracellular dehydration, ice formation and their implications on T cell freeze-thaw viability.
    Dan N; Shelake S; Luo WC; Rahman M; Lu J; Bogner RH; Lu X
    Int J Pharm; 2024 Nov; 665():124694. PubMed ID: 39265855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes.
    Trad FS; Toner M; Biggers JD
    Hum Reprod; 1999 Jun; 14(6):1569-77. PubMed ID: 10357978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X; Zhao G; Shu Z; Niu D; Zhang Z; Zhou P; Cao Y; Gao D
    Biopreserv Biobank; 2016 Dec; 14(6):511-519. PubMed ID: 27532801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryomicroscopic analysis of intracellular ice formation in porcine iliac endothelial cells upon cooling.
    Li Y; Panhwa F; Chen Z; Yuan F; Ji X; Hu P; Zhao G
    Cryo Letters; 2017; 38(4):315-320. PubMed ID: 29734433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Innocuous intracellular ice improves survival of frozen cells.
    Acker JP; McGann LE
    Cell Transplant; 2002; 11(6):563-71. PubMed ID: 12428746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryobiological parameters of multipotent stromal cells obtained from different sources.
    Lauterboeck L; Wolkers WF; Glasmacher B
    Cryobiology; 2017 Feb; 74():93-102. PubMed ID: 27916562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG
    Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimethyl sulfoxide and ethylene glycol promote membrane phase change during cryopreservation.
    Spindler R; Wolkers WF; Glasmacher B
    Cryo Letters; 2011; 32(2):148-57. PubMed ID: 21766144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of intracellular ice formation in Drosophila melanogaster embryos.
    Myers SP; Pitt RE; Lynch DV; Steponkus PL
    Cryobiology; 1989 Oct; 26(5):472-84. PubMed ID: 2507228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effect of intracellular ice during freezing?
    Acker JP; McGann LE
    Cryobiology; 2003 Apr; 46(2):197-202. PubMed ID: 12686211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Video analysis of osmotic cell response during cryopreservation.
    Spindler R; Rosenhahn B; Hofmann N; Glasmacher B
    Cryobiology; 2012 Jun; 64(3):250-60. PubMed ID: 22342926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of hepatocyte (HepG2) cell monolayers: impact of trehalose.
    Stokich B; Osgood Q; Grimm D; Moorthy S; Chakraborty N; Menze MA
    Cryobiology; 2014 Oct; 69(2):281-90. PubMed ID: 25127872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.