BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33031823)

  • 21. Characterizing Intracellular Ice Formation of Lymphoblasts Using Low-Temperature Raman Spectroscopy.
    Yu G; Yap YR; Pollock K; Hubel A
    Biophys J; 2017 Jun; 112(12):2653-2663. PubMed ID: 28636921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide.
    Karlsson JO; Cravalho EG; Borel Rinkes IH; Tompkins RG; Yarmush ML; Toner M
    Biophys J; 1993 Dec; 65(6):2524-36. PubMed ID: 8312489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond membrane integrity: Assessing the functionality of human umbilical vein endothelial cells after cryopreservation.
    Marquez-Curtis LA; Sultani AB; McGann LE; Elliott JA
    Cryobiology; 2016 Jun; 72(3):183-90. PubMed ID: 27182035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach.
    Sultani AB; Marquez-Curtis LA; Elliott JA; McGann LE
    Sci Rep; 2016 Oct; 6():34393. PubMed ID: 27708349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane damage occurs during the formation of intracellular ice.
    Acker JP; McGann LE
    Cryo Letters; 2001; 22(4):241-54. PubMed ID: 11788865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryopreservation of assay-ready hepatocyte monolayers by chemically-induced ice nucleation: preservation of hepatic function and hepatotoxicity screening capabilities.
    Tomás RMF; Dallman R; Congdon TR; Gibson MI
    Biomater Sci; 2023 Nov; 11(23):7639-7654. PubMed ID: 37840476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sperm cryopreservation in the spermcasting Australian flat oyster Ostrea angasi by a programmable freezing method.
    Hassan MM; Li X; Liu Y; Qin JG
    Cryobiology; 2017 Jun; 76():119-124. PubMed ID: 28341133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-cell contact affects membrane integrity after intracellular freezing.
    Acker JP; McGann LE
    Cryobiology; 2000 Feb; 40(1):54-63. PubMed ID: 10679150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.
    Smith DJ; Schulte M; Bischof JC
    J Biomech Eng; 1998 Oct; 120(5):549-58. PubMed ID: 10412431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating membrane and mitochondrial cryobiological responses of HUVEC using interrupted cooling protocols.
    Reardon AJ; Elliott JA; McGann LE
    Cryobiology; 2015 Oct; 71(2):306-17. PubMed ID: 26254036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pre- and post-thaw assessment of intracellular ice formation.
    Acker JP; Croteau IM
    J Microsc; 2004 Aug; 215(Pt 2):131-8. PubMed ID: 15315499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of cellular membranes conveys cryoprotection to cells during rapid, non-equilibrium cryopreservation.
    Huebinger J
    PLoS One; 2018; 13(10):e0205520. PubMed ID: 30304023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of post-thaw sperm survivals using liquid nitrogen vapor in a spermcasting oyster Ostrea angasi.
    Hassan MM; Li X; Qin JG
    Cryobiology; 2017 Oct; 78():1-7. PubMed ID: 28803845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antagonist effect of DMSO on the cryoprotection ability of glycerol during cryopreservation of buffalo sperm.
    Rasul Z; Ahmed N; Anzar M
    Theriogenology; 2007 Sep; 68(5):813-9. PubMed ID: 17658594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methyl glycol, methanol and DMSO effects on post-thaw motility, velocities, membrane integrity and mitochondrial function of Brycon orbignyanus and Prochilodus lineatus (Characiformes) sperm.
    Viveiros AT; Nascimento AF; Leal MC; Gonçalves AC; Orfão LH; Cosson J
    Fish Physiol Biochem; 2015 Feb; 41(1):193-201. PubMed ID: 25433690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryopreservation of swine colostrum-derived cells.
    Marquez-Curtis LA; Dorobantu LS; Sauvageau D; Elliott JAW
    Cryobiology; 2020 Dec; 97():168-178. PubMed ID: 32464145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryopreservation with DMSO affects the DNA integrity, apoptosis, cell cycle and function of human bone mesenchymal stem cells.
    Ding Y; Liu S; Liu J; Jin S; Wang J
    Cryobiology; 2024 Mar; 114():104847. PubMed ID: 38246511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of different diluents, cryoprotective agents, and freezing rates on sperm cryopreservation in Epinephelus akaara.
    Ahn JY; Park JY; Lim HK
    Cryobiology; 2018 Aug; 83():60-64. PubMed ID: 29885288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of high concentrations of dimethyl sulfoxide for cryopreservation of HepG2 cells adhered to glass and polydimethylsiloxane matrices.
    Nagahara Y; Sekine H; Otaki M; Hayashi M; Murase N
    Cryobiology; 2016 Feb; 72(1):53-9. PubMed ID: 26621206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.