These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 33031827)
61. Homoharringtonine enhances bortezomib antimyeloma activity in myeloma cells adhesion to bone marrow stromal cells and in SCID mouse xenografts. Chen P; Yuan Q; Yang H; Wen X; You P; Hou D; Xie J; Cheng Y; Huang H Leuk Res; 2017 Jun; 57():119-126. PubMed ID: 28463768 [TBL] [Abstract][Full Text] [Related]
62. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Ke G; Liang L; Yang JM; Huang X; Han D; Huang S; Zhao Y; Zha R; He X; Wu X Oncogene; 2013 Jun; 32(25):3019-27. PubMed ID: 22847611 [TBL] [Abstract][Full Text] [Related]
63. Role of Apg-1 in HSF1 activation and bortezomib sensitivity in myeloma cells. Zhu M; Huang Y; Tang J; Shao S; Zhang L; Zhou Y; He S; Wang Y Exp Hematol; 2020 Jan; 81():50-59. PubMed ID: 31899217 [TBL] [Abstract][Full Text] [Related]
64. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Salem K; McCormick ML; Wendlandt E; Zhan F; Goel A Redox Biol; 2015; 4():23-33. PubMed ID: 25485927 [TBL] [Abstract][Full Text] [Related]
65. miR-202 Enhances the Anti-Tumor Effect of Cisplatin on Non-Small Cell Lung Cancer by Targeting the Ras/MAPK Pathway. Sun W; Ping W; Tian Y; Zou W; Liu J; Zu Y Cell Physiol Biochem; 2018; 51(5):2160-2171. PubMed ID: 30522099 [TBL] [Abstract][Full Text] [Related]
66. miR-466 Contributes to the Enhanced Antitumor Effect of Bortezomib on Non-Small-Cell Lung Cancer by Inhibiting CCND1. Wang WH; Zhan JM; Tang YL; Zhou N; Liu WY; Jiang DW Chemotherapy; 2022; 67(2):110-122. PubMed ID: 35042223 [TBL] [Abstract][Full Text] [Related]
67. Targeting a novel circITCH/miR-421/BTG1 axis is effective to suppress the malignant phenotypes in hepatocellular carcinoma (HCC) cells. Li X; Yin X; Bao H; Liu C Cytotechnology; 2023 Jun; 75(3):255-267. PubMed ID: 37187949 [TBL] [Abstract][Full Text] [Related]
68. Upregulation of CCL2 via ATF3/c-Jun interaction mediated the Bortezomib-induced peripheral neuropathy. Liu C; Luan S; OuYang H; Huang Z; Wu S; Ma C; Wei J; Xin W Brain Behav Immun; 2016 Mar; 53():96-104. PubMed ID: 26554515 [TBL] [Abstract][Full Text] [Related]
69. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Liu YY; Zhang LY; Du WZ Biosci Rep; 2019 Dec; 39(12):. PubMed ID: 31793989 [TBL] [Abstract][Full Text] [Related]
70. Protein Kinase D 1 Predicts Poor Treatment Response and Unfavorable Survival of Bortezomib-Based Treatment, and Its Knockdown Enhances Drug Sensitivity to Bortezomib in Multiple Myeloma. Li X; Yang Y; Yi X Technol Cancer Res Treat; 2020; 19():1533033820936770. PubMed ID: 32799769 [TBL] [Abstract][Full Text] [Related]
71. MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. Xu H; Zhao L; Fang Q; Sun J; Zhang S; Zhan C; Liu S; Zhang Y PLoS One; 2014; 9(12):e115565. PubMed ID: 25531114 [TBL] [Abstract][Full Text] [Related]
72. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Turner JG; Kashyap T; Dawson JL; Gomez J; Bauer AA; Grant S; Dai Y; Shain KH; Meads M; Landesman Y; Sullivan DM Oncotarget; 2016 Nov; 7(48):78896-78909. PubMed ID: 27806331 [TBL] [Abstract][Full Text] [Related]
73. Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma. Wu X; Xia J; Zhang J; Zhu Y; Wu Y; Guo J; Chen S; Lei Q; Meng B; Kuang C; Feng X; He Y; Shen Y; Li X; Qiu L; Li G; Zhou W Br J Haematol; 2020 Jul; 190(1):52-66. PubMed ID: 32037523 [TBL] [Abstract][Full Text] [Related]
74. MiR-183 overexpression inhibits tumorigenesis and enhances DDP-induced cytotoxicity by targeting MTA1 in nasopharyngeal carcinoma. Wang G; Wang S; Li C Tumour Biol; 2017 Jun; 39(6):1010428317703825. PubMed ID: 28631568 [TBL] [Abstract][Full Text] [Related]
75. LncRNA XIST knockdown suppresses the malignancy of human nasopharyngeal carcinoma through XIST/miRNA-148a-3p/ADAM17 pathway in vitro and in vivo. Shi J; Tan S; Song L; Song L; Wang Y Biomed Pharmacother; 2020 Jan; 121():109620. PubMed ID: 31810117 [TBL] [Abstract][Full Text] [Related]
76. MicroRNA-497 inhibits multiple myeloma growth and increases susceptibility to bortezomib by targeting Bcl-2. Tian F; Zhan Y; Zhu W; Li J; Tang M; Chen X; Jiang J Int J Mol Med; 2019 Feb; 43(2):1058-1066. PubMed ID: 30535471 [TBL] [Abstract][Full Text] [Related]
77. Circular RNA circ_0000615 knockdown suppresses the development of nasopharyngeal cancer through regulating the miR-338-3p/FGF2 axis. Liu HS; Zheng RN; Guo LB; Fu XJ Neoplasma; 2020 Sep; 67(5):1032-1041. PubMed ID: 32453598 [TBL] [Abstract][Full Text] [Related]
78. Anti-BCMA-engineered exosomes for bortezomib-targeted delivery in multiple myeloma. Yuan S; Li Q; He C; Bing M; Zhang X; Xu H; Wang Z; Zhao M; Zhang Y; Chai Y; Li B; Zhuang W Blood Adv; 2024 Sep; 8(18):4886-4899. PubMed ID: 38875465 [TBL] [Abstract][Full Text] [Related]
79. Low expression of neural cell adhesion molecule, CD56, is associated with low efficacy of bortezomib plus dexamethasone therapy in multiple myeloma. Yoshida T; Ri M; Kinoshita S; Narita T; Totani H; Ashour R; Ito A; Kusumoto S; Ishida T; Komatsu H; Iida S PLoS One; 2018; 13(5):e0196780. PubMed ID: 29738534 [TBL] [Abstract][Full Text] [Related]
80. NCX1/Ca Li T; Xiao P; Qiu D; Yang A; Chen Q; Lin J; Liu Y; Chen J; Zeng Z Cell Commun Signal; 2024 May; 22(1):258. PubMed ID: 38711131 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]