These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33031983)

  • 41. Application of a discrete-continuum model to karst aquifers in North China.
    Wu Q; Zhou W; Pan G; Ye S
    Ground Water; 2009; 47(3):453-61. PubMed ID: 19210558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advective Transport Phenomena to Better Understand Dispersion in Field and Modeling Practice.
    de Lange WJ
    Ground Water; 2020 Jan; 58(1):46-55. PubMed ID: 30891733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of karst aquifer spring flows with a gray system decomposition model.
    Hao Y; Yeh TC; Wang Y; Zhao Y
    Ground Water; 2007; 45(1):46-52. PubMed ID: 17257338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.
    Hillebrand O; Nödler K; Sauter M; Licha T
    Sci Total Environ; 2015 Feb; 506-507():338-43. PubMed ID: 25460968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Groundwater contamination downstream of a contaminant penetration site. I. Extension-expansion of the contaminant plume.
    Rubin H; Buddemeier RW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Nov; 37(10):1781-812. PubMed ID: 12413210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined physical and chemical nonequilibrium transport model for solution conduits.
    Field MS; Leij FJ
    J Contam Hydrol; 2014 Feb; 157():37-46. PubMed ID: 24292209
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China.
    Zang H; Zheng X; Qin Z; Jia Z
    Isotopes Environ Health Stud; 2015; 51(2):271-84. PubMed ID: 25511581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites.
    Locatelli L; Binning PJ; Sanchez-Vila X; Søndergaard GL; Rosenberg L; Bjerg PL
    J Contam Hydrol; 2019 Feb; 221():35-49. PubMed ID: 30638639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solute source depletion control of forward and back diffusion through low-permeability zones.
    Yang M; Annable MD; Jawitz JW
    J Contam Hydrol; 2016 Oct; 193():54-62. PubMed ID: 27636989
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of reactive well networks for remediating heterogeneous aquifers.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):731-7. PubMed ID: 18444075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contaminant point source localization error estimates as functions of data quantity and model quality.
    Hansen SK; Vesselinov VV
    J Contam Hydrol; 2016 Oct; 193():74-85. PubMed ID: 27639975
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem.
    Nick HM; Raoof A; Centler F; Thullner M; Regnier P
    J Contam Hydrol; 2013 Feb; 145():90-104. PubMed ID: 23334209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Time and Magnitude of Peak Concentration of Reactive Groundwater Contaminants Discharged to a River.
    Taylor SW; Guha H
    Ground Water; 2017 Jan; 55(1):63-72. PubMed ID: 27775839
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of thin aquitards on two-dimensional solute transport in an aquifer.
    Rezaei A; Zhan H; Zare M
    J Contam Hydrol; 2013 Sep; 152():117-36. PubMed ID: 23906486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria).
    Mayaud C; Wagner T; Benischke R; Birk S
    Carbonates Evaporites; 2016; 31(4):357-365. PubMed ID: 28077913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes.
    Ren K; Zeng J; Liang J; Yuan D; Jiao Y; Peng C; Pan X
    Sci Total Environ; 2021 Mar; 761():143223. PubMed ID: 33160668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.