These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33032002)

  • 41. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effective leaching of spent lithium-ion batteries using DL-lactic acid as lixiviant and selective separation of metals through precipitation and solvent extraction.
    Sahu S; Devi N
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90152-90167. PubMed ID: 36520282
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acid leaching of LiCoO
    Cerrillo-Gonzalez MM; Villen-Guzman M; Vereda-Alonso C; Rodriguez-Maroto JM; Paz-Garcia JM
    Chemosphere; 2022 Jan; 287(Pt 1):132020. PubMed ID: 34523444
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maleic, glycolic and acetoacetic acids-leaching for recovery of valuable metals from spent lithium-ion batteries: leaching parameters, thermodynamics and kinetics.
    Liu B; Huang Q; Su Y; Sun L; Wu T; Wang G; Kelly RM; Wu F
    R Soc Open Sci; 2019 Sep; 6(9):191061. PubMed ID: 31598322
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resource recovery and regeneration strategies for spent lithium-ion batteries: Toward sustainable high-value cathode materials.
    Gu K; Tokoro C; Takaya Y; Zhou J; Qin W; Han J
    Waste Manag; 2024 Apr; 179():120-129. PubMed ID: 38471250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries.
    Gong R; Li C; Meng Q; Dong P; Zhang Y; Zhang B; Yan J; Li Y
    J Environ Manage; 2022 Oct; 319():115740. PubMed ID: 35868192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid.
    Xu M; Kang S; Jiang F; Yan X; Zhu Z; Zhao Q; Teng Y; Wang Y
    RSC Adv; 2021 Aug; 11(44):27689-27700. PubMed ID: 35480651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching.
    Wu C; Li B; Yuan C; Ni S; Li L
    Waste Manag; 2019 Jun; 93():153-161. PubMed ID: 31235052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Leaching kinetics of fluorine during the aluminum removal from spent Li-ion battery cathode materials.
    Li S; Zhu J
    J Environ Sci (China); 2024 Apr; 138():312-325. PubMed ID: 38135398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biotreatment for the spent lithium-ion battery in a three-module integrated microbial-fuel-cell recycling system.
    Huang T; Junjun T; Liu W; Song D; Yin LX; Zhang S
    Waste Manag; 2021 May; 126():377-387. PubMed ID: 33819901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel green deep eutectic solvent for one-step selective separation of valuable metals from spent lithium batteries: Bifunctional effect and mechanism.
    Yang Z; Tang S; Huo X; Zhang M; Guo M
    Environ Res; 2023 Sep; 233():116337. PubMed ID: 37301494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.
    Gao W; Zhang X; Zheng X; Lin X; Cao H; Zhang Y; Sun Z
    Environ Sci Technol; 2017 Feb; 51(3):1662-1669. PubMed ID: 28081362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO
    Dos Santos CS; Alves JC; da Silva SP; Evangelista Sita L; da Silva PRC; de Almeida LC; Scarminio J
    J Hazard Mater; 2019 Jan; 362():458-466. PubMed ID: 30265977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Repurposing of Fruit Peel Waste as a Green Reductant for Recycling of Spent Lithium-Ion Batteries.
    Wu Z; Soh T; Chan JJ; Meng S; Meyer D; Srinivasan M; Tay CY
    Environ Sci Technol; 2020 Aug; 54(15):9681-9692. PubMed ID: 32644805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.