These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33032008)

  • 1. Fuzzy Surrogate Safety Metrics for real-time assessment of rear-end collision risk. A study based on empirical observations.
    Mattas K; Makridis M; Botzoris G; Kriston A; Minarini F; Papadopoulos B; Re F; Rognelund G; Ciuffo B
    Accid Anal Prev; 2020 Dec; 148():105794. PubMed ID: 33032008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing an improved automatic preventive braking system based on safety-critical car-following events from naturalistic driving study data.
    Zhou W; Wang X; Glaser Y; Wu X; Xu X
    Accid Anal Prev; 2022 Dec; 178():106834. PubMed ID: 36150234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system.
    Li Y; Wang H; Wang W; Liu S; Xiang Y
    Traffic Inj Prev; 2016 Aug; 17(6):597-603. PubMed ID: 26761633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rear-end collision warning of connected automated vehicles based on a novel stochastic local multivehicle optimal velocity model.
    Wen J; Wu C; Zhang R; Xiao X; Nv N; Shi Y
    Accid Anal Prev; 2020 Dec; 148():105800. PubMed ID: 33128992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A forward collision avoidance algorithm based on driver braking behavior.
    Xiong X; Wang M; Cai Y; Chen L; Farah H; Hagenzieker M
    Accid Anal Prev; 2019 Aug; 129():30-43. PubMed ID: 31103877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved automated braking system for rear-end collisions: A study based on a driving simulator experiment.
    Hang J; Yan X; Li X; Duan K; Yang J; Xue Q
    J Safety Res; 2022 Feb; 80():416-427. PubMed ID: 35249623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the feedback links of connected and automated vehicle on rear-end collision risks with vehicle-to-vehicle communication.
    Qin Y; Wang H
    Traffic Inj Prev; 2019; 20(1):79-83. PubMed ID: 30715915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of rear-end crashes involving passenger vehicles with automatic emergency braking.
    Cicchino JB; Zuby DS
    Traffic Inj Prev; 2019; 20(sup1):S112-S118. PubMed ID: 31381436
    [No Abstract]   [Full Text] [Related]  

  • 10. A two-dimensional surrogate safety measure based on fuzzy logic model.
    Xu Y; Ye W; Xie Y; Wang C
    Accid Anal Prev; 2024 May; 199():107529. PubMed ID: 38442630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driver behaviors assisted by different human machine interfaces to avoid rear-end collisions during level 2 automated driving.
    Yang B; Saito T; Wang Z; Kitazaki S; Nakano K
    Traffic Inj Prev; 2023; 24(6):475-481. PubMed ID: 37339499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of real-world connected vehicle data in identifying high-risk locations based on a new surrogate safety measure.
    Xie K; Yang D; Ozbay K; Yang H
    Accid Anal Prev; 2019 Apr; 125():311-319. PubMed ID: 29983165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waymo simulated driving behavior in reconstructed fatal crashes within an autonomous vehicle operating domain.
    Scanlon JM; Kusano KD; Daniel T; Alderson C; Ogle A; Victor T
    Accid Anal Prev; 2021 Dec; 163():106454. PubMed ID: 34700249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the crash mitigation effect of low-speed automated emergency braking systems based on insurance claims data.
    Isaksson-Hellman I; Lindman M
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():42-7. PubMed ID: 27586101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways.
    Li Y; Li Z; Wang H; Wang W; Xing L
    Accid Anal Prev; 2017 Jul; 104():137-145. PubMed ID: 28500990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing rear-end collision risk of cars and heavy vehicles on freeways using a surrogate safety measure.
    Zhao P; Lee C
    Accid Anal Prev; 2018 Apr; 113():149-158. PubMed ID: 29407662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates.
    Cicchino JB
    Accid Anal Prev; 2017 Feb; 99(Pt A):142-152. PubMed ID: 27898367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal safety impacts of cooperative adaptive cruise control vehicle's degradation.
    Tu Y; Wang W; Li Y; Xu C; Xu T; Li X
    J Safety Res; 2019 Jun; 69():177-192. PubMed ID: 31235228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways.
    Yao Z; Hu R; Jiang Y; Xu T
    J Safety Res; 2020 Dec; 75():262-274. PubMed ID: 33334485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.