These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33032087)

  • 21. Synthesis of lipid A type pyran carboxylic acids with ether chains and their biological activities.
    Watanabe Y; Mochizuki T; Shiozaki M; Kanai S; Kurakata S; Nishijima M
    Carbohydr Res; 2001 Jul; 333(3):203-31. PubMed ID: 11448684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of a lipid a derivative that contains a 27-hydroxyoctacosanoic acid moiety.
    Santhanam B; Boons GJ
    Org Lett; 2004 Sep; 6(19):3333-6. PubMed ID: 15355045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.
    Gervay-Hague J
    Acc Chem Res; 2016 Jan; 49(1):35-47. PubMed ID: 26524481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 1-naphthylpropargyl ether group: a readily cleaved and sterically minimal protecting system for stereoselective glycosylation.
    Crich D; Wu B
    Org Lett; 2006 Oct; 8(21):4879-82. PubMed ID: 17020326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem Bond-Forming Reactions of 1-Alkynyl Ethers.
    Minehan TG
    Acc Chem Res; 2016 Jun; 49(6):1168-81. PubMed ID: 27195605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orthogonal protecting groups for N(alpha)-amino and C-terminal carboxyl functions in solid-phase peptide synthesis.
    Albericio F
    Biopolymers; 2000; 55(2):123-39. PubMed ID: 11074410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of crown ethers in peptide chemistry-V. Solid-phase synthesis of peptides by the fragment condensation approach using crown ethers as non-covalent protecting groups.
    Botti P; Ball HL; Lucietto P; Pinori M; Rizzi E; Mascagni P
    J Pept Sci; 1996; 2(6):371-80. PubMed ID: 9230465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and biological evaluation of Rhizobium sin-1 lipid A derivatives.
    Demchenko AV; Wolfert MA; Santhanam B; Moore JN; Boons GJ
    J Am Chem Soc; 2003 May; 125(20):6103-12. PubMed ID: 12785841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of innate immune responses with synthetic lipid A derivatives.
    Zhang Y; Gaekwad J; Wolfert MA; Boons GJ
    J Am Chem Soc; 2007 Apr; 129(16):5200-16. PubMed ID: 17391035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A.
    Wang B; Han Y; Li Y; Li Y; Wang X
    PLoS One; 2015; 10(12):e0144714. PubMed ID: 26710252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A convenient route to N-[2-(Fmoc)aminoethyl]glycine esters and PNA oligomerization using a Bis-N-Boc nucleobase protecting group strategy.
    Wojciechowski F; Hudson RH
    J Org Chem; 2008 May; 73(10):3807-16. PubMed ID: 18412392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and biological evaluation of a lipid A derivative that contains an aminogluconate moiety.
    Santhanam B; Wolfert MA; Moore JN; Boons GJ
    Chemistry; 2004 Oct; 10(19):4798-807. PubMed ID: 15372693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palladium-catalyzed vicinal amino alcohols synthesis from allyl amines by in situ tether formation and carboetherification.
    Orcel U; Waser J
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5250-4. PubMed ID: 25720966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress in the synthesis and biological evaluation of lipid A and its derivatives.
    Gao J; Guo Z
    Med Res Rev; 2018 Mar; 38(2):556-601. PubMed ID: 28621828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses.
    Fujimoto Y; Shimoyama A; Saeki A; Kitayama N; Kasamatsu C; Tsutsui H; Fukase K
    Mol Biosyst; 2013 May; 9(5):987-96. PubMed ID: 23429860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Allyl, methallyl, prenyl, and methylprenyl ethers as protected alcohols: their selective cleavage with diphenyldisulfone under neutral conditions.
    Marković D; Vogel P
    Org Lett; 2004 Aug; 6(16):2693-6. PubMed ID: 15281746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modular continuous flow synthesis of orthogonally protected 6-deoxy glucose glycals.
    Yalamanchili S; Nguyen TV; Pohl NLB; Bennett CS
    Org Biomol Chem; 2020 May; 18(17):3254-3257. PubMed ID: 32293636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductive Etherification of Fatty Acids or Esters with Alcohols using Molecular Hydrogen.
    Erb B; Risto E; Wendling T; Gooßen LJ
    ChemSusChem; 2016 Jun; 9(12):1442-8. PubMed ID: 27214823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-supported acids as mild and versatile reagents for the deprotection of aromatic ethers.
    Ploypradith P; Cheryklin P; Niyomtham N; Bertoni DR; Ruchirawat S
    Org Lett; 2007 Jul; 9(14):2637-40. PubMed ID: 17564457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A hierarchy of aryloxide deprotection by boron tribromide.
    Punna S; Meunier S; Finn MG
    Org Lett; 2004 Aug; 6(16):2777-9. PubMed ID: 15281767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.