These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33032399)

  • 1. Analytic energy gradients for the self-consistent direct random phase approximation.
    Thierbach A; Görling A
    J Chem Phys; 2020 Oct; 153(13):134113. PubMed ID: 33032399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and accurate hybrid random-phase-approximation methods.
    Thierbach A; Schmidtel D; Görling A
    J Chem Phys; 2019 Oct; 151(14):144117. PubMed ID: 31615260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic energy gradients for the coupled-cluster singles and doubles with perturbative triples method with the density-fitting approximation.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2017 Jul; 147(4):044104. PubMed ID: 28764345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical accuracy with σ-functionals for the Kohn-Sham correlation energy optimized for different input orbitals and eigenvalues.
    Fauser S; Trushin E; Neiss C; Görling A
    J Chem Phys; 2021 Oct; 155(13):134111. PubMed ID: 34624971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2013 Sep; 139(10):104116. PubMed ID: 24050337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward chemical accuracy at low computational cost: Density-functional theory with σ-functionals for the correlation energy.
    Trushin E; Thierbach A; Görling A
    J Chem Phys; 2021 Jan; 154(1):014104. PubMed ID: 33412877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometries and vibrational frequencies with Kohn-Sham methods using σ-functionals for the correlation energy.
    Neiss C; Fauser S; Görling A
    J Chem Phys; 2023 Jan; 158(4):044107. PubMed ID: 36725500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry optimization using improved virtual orbitals: a complete active space numerical gradient approach.
    Chaudhuri RK; Freed KF
    J Chem Phys; 2007 Mar; 126(11):114103. PubMed ID: 17381192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation.
    Bleiziffer P; Hesselmann A; Görling A
    J Chem Phys; 2012 Apr; 136(13):134102. PubMed ID: 22482535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and application of a new dual-hybrid random phase approximation.
    Mezei PD; Csonka GI; Ruzsinszky A; Kállay M
    J Chem Theory Comput; 2015 Oct; 11(10):4615-26. PubMed ID: 26574252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Ishimura K; Kitaura K
    J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically accurate singlet-triplet gaps of organic chromophores and linear acenes by the random phase approximation and σ-functionals.
    Dhingra D; Shori A; Förster A
    J Chem Phys; 2023 Nov; 159(19):. PubMed ID: 37966004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2013 May; 138(18):184103. PubMed ID: 23676025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytic energy gradients for the exact exchange Kohn-Sham method.
    Thierbach A; Görling A
    J Chem Phys; 2020 Mar; 152(11):114113. PubMed ID: 32199409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Complete Basis Set Extrapolation of Direct Random Phase Correlation Energies.
    Mezei PD; Csonka GI; Ruzsinszky A
    J Chem Theory Comput; 2015 Aug; 11(8):3961-7. PubMed ID: 26574475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Turney JM; Yamaguchi Y; Schaefer HF; Sherrill CD
    J Chem Phys; 2011 Sep; 135(10):104103. PubMed ID: 21932872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.