These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33032400)

  • 1. Unraveling intra-aggregate structural disorder using single-molecule spectroscopy.
    Kunsel T; Löhner A; Mayo JJ; Köhler J; Jansen TLC; Knoester J
    J Chem Phys; 2020 Oct; 153(13):134304. PubMed ID: 33032400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Chemical Simulation of the
    Wang Z; Suo B; Yin S; Zou W
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of astaxanthin aggregates as revealed by analysis and simulation of optical spectra.
    Lu L; Hu T; Xu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():85-92. PubMed ID: 28549295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the influence of disorder on the exciton dynamics and energy transfer in Zn-phthalocyanine H-aggregates.
    Doria S; Lapini A; Di Donato M; Righini R; Azzaroli N; Iagatti A; Caram JR; Sinclair TS; Cupellini L; Jurinovich S; Mennucci B; Zanotti G; Paoletti AM; Pennesi G; Foggi P
    Phys Chem Chem Phys; 2018 Aug; 20(34):22331-22341. PubMed ID: 30124697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores.
    Röger C; Miloslavina Y; Brunner D; Holzwarth AR; Würthner F
    J Am Chem Soc; 2008 May; 130(18):5929-39. PubMed ID: 18393414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.
    Sengupta S; Würthner F
    Acc Chem Res; 2013 Nov; 46(11):2498-512. PubMed ID: 23865851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles calculation of the optical properties of an amphiphilic cyanine dye aggregate.
    Haverkort F; Stradomska A; de Vries AH; Knoester J
    J Phys Chem A; 2014 Feb; 118(6):1012-23. PubMed ID: 24422675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-IR light-sensitized voltaic conversion system using nanocrystalline TiO2 film by Zn chlorophyll derivative aggregate.
    Amao Y; Yamada Y
    Langmuir; 2005 Mar; 21(7):3008-12. PubMed ID: 15779978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of charge-transfer states on the vibrationally resolved absorption spectra and exciton dynamics in ZnPc aggregates: Simulations from a non-Makovian stochastic Schrödinger equation.
    Feng S; Wang YC; Ke Y; Liang W; Zhao Y
    J Chem Phys; 2020 Jul; 153(3):034116. PubMed ID: 32716176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on Absorption Spectra of Lutein Aggregate with Experimental Analysis and Theoretical Calculation].
    Lu LP; Li M; Liu GL; Wei LS; Wu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3287-91. PubMed ID: 30246965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast dynamics of multi-exciton state coupled to coherent vibration in zinc chlorin aggregates for artificial photosynthesis.
    Shi T; Liu Z; Miyatake T; Tamiaki H; Kobayashi T; Zhang Z; Du J; Leng Y
    Opt Express; 2017 Nov; 25(24):29667-29675. PubMed ID: 29221004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled formation of the two-dimensional TTBC J-aggregates in an aqueous solution.
    Birkan B; Gülen D; Ozçelik S
    J Phys Chem B; 2006 Jun; 110(22):10805-13. PubMed ID: 16771330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton energy transfer between optically forbidden states of molecular aggregates.
    Kobayashi T; Taneichi T; Takasaka S
    J Chem Phys; 2007 May; 126(19):194705. PubMed ID: 17523826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. I. Experiments and Monte Carlo simulations.
    Ketelaars M; van Oijen AM; Matsushita M; Köhler J; Schmidt J; Aartsma TJ
    Biophys J; 2001 Mar; 80(3):1591-603. PubMed ID: 11222320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths.
    Cui J; Beyler AP; Coropceanu I; Cleary L; Avila TR; Chen Y; Cordero JM; Heathcote SL; Harris DK; Chen O; Cao J; Bawendi MG
    Nano Lett; 2016 Jan; 16(1):289-96. PubMed ID: 26636347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spectral signatures of Frenkel polarons in H- and J-aggregates.
    Spano FC
    Acc Chem Res; 2010 Mar; 43(3):429-39. PubMed ID: 20014774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signature of anomalous exciton localization in the optical response of self-assembled organic nanotubes.
    Bloemsma EA; Vlaming SM; Malyshev VA; Knoester J
    Phys Rev Lett; 2015 Apr; 114(15):156804. PubMed ID: 25933330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
    Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model.
    Yamagata H; Spano FC
    J Chem Phys; 2012 May; 136(18):184901. PubMed ID: 22583308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model.
    Sperling J; Nemeth A; Hauer J; Abramavicius D; Mukamel S; Kauffmann HF; Milota F
    J Phys Chem A; 2010 Aug; 114(32):8179-89. PubMed ID: 20701329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.