BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33032419)

  • 21. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models.
    Sajadi F; Rowley CN
    PeerJ; 2018; 6():e5472. PubMed ID: 30128211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supra-Atomic Coarse-Grained GROMOS Force Field for Aliphatic Hydrocarbons in the Liquid Phase.
    Eichenberger AP; Huang W; Riniker S; van Gunsteren WF
    J Chem Theory Comput; 2015 Jul; 11(7):2925-37. PubMed ID: 26575730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Lennard-Jones and Buckingham Potentials for Lanthanoid Ions in Water.
    Migliorati V; Serva A; Terenzio FM; D'Angelo P
    Inorg Chem; 2017 Jun; 56(11):6214-6224. PubMed ID: 28493693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shortcomings of the standard Lennard-Jones dispersion term in water models, studied with force matching.
    Nicolini P; Guàrdia E; Masia M
    J Chem Phys; 2013 Nov; 139(18):184111. PubMed ID: 24320258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q.
    Alejandre J; Chapela GA; Saint-Martin H; Mendoza N
    Phys Chem Chem Phys; 2011 Nov; 13(44):19728-40. PubMed ID: 21922085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew.
    Horn HW; Swope WC; Pitera JW; Madura JD; Dick TJ; Hura GL; Head-Gordon T
    J Chem Phys; 2004 May; 120(20):9665-78. PubMed ID: 15267980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions of Pauli repulsions to the energetics and physical properties computed in QM/MM methods.
    Jin Y; Johnson ER; Hu X; Yang W; Hu H
    J Comput Chem; 2013 Oct; 34(27):2380-8. PubMed ID: 23922165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.
    Curutchet C; Cupellini L; Kongsted J; Corni S; Frediani L; Steindal AH; Guido CA; Scalmani G; Mennucci B
    J Chem Theory Comput; 2018 Mar; 14(3):1671-1681. PubMed ID: 29439575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice.
    Yu H; van Gunsteren WF
    J Chem Phys; 2004 Nov; 121(19):9549-64. PubMed ID: 15538877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classical Pauli repulsion: An anisotropic, atomic multipole model.
    Rackers JA; Ponder JW
    J Chem Phys; 2019 Feb; 150(8):084104. PubMed ID: 30823770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.
    Avendaño C; Lafitte T; Adjiman CS; Galindo A; Müller EA; Jackson G
    J Phys Chem B; 2013 Mar; 117(9):2717-33. PubMed ID: 23311931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel approach for designing simple point charge models for liquid water with three interaction sites.
    Glättli A; Daura X; Van Gunsteren WF
    J Comput Chem; 2003 Jul; 24(9):1087-96. PubMed ID: 12759908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide.
    Avendaño C; Lafitte T; Galindo A; Adjiman CS; Jackson G; Müller EA
    J Phys Chem B; 2011 Sep; 115(38):11154-69. PubMed ID: 21815624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new force field of formamide and the effect of the dielectric constant on miscibility.
    de la Luz AP; Méndez-Maldonado GA; Núñez-Rojas E; Bresme F; Alejandre J
    J Chem Theory Comput; 2015 Jun; 11(6):2792-800. PubMed ID: 26575572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium Chloride, NaCl/ϵ: New Force Field.
    Fuentes-Azcatl R; Barbosa MC
    J Phys Chem B; 2016 Mar; 120(9):2460-70. PubMed ID: 26890321
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gaussian-Charge Polarizable and Nonpolarizable Models for CO2.
    Jiang H; Moultos OA; Economou IG; Panagiotopoulos AZ
    J Phys Chem B; 2016 Feb; 120(5):984-94. PubMed ID: 26788614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determining force field parameters using a physically based equation of state.
    van Westen T; Vlugt TJ; Gross J
    J Phys Chem B; 2011 Jun; 115(24):7872-80. PubMed ID: 21568280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lennard-Jones Parameters Determined to Reproduce the Solubility of NaCl and KCl in SPC/E, TIP3P, and TIP4P/2005 Water.
    Yagasaki T; Matsumoto M; Tanaka H
    J Chem Theory Comput; 2020 Apr; 16(4):2460-2473. PubMed ID: 32207974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physically motivated, robust, ab initio force fields for CO2 and N2.
    Yu K; McDaniel JG; Schmidt JR
    J Phys Chem B; 2011 Aug; 115(33):10054-63. PubMed ID: 21736354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarizable Force Field with a σ-Hole for Liquid and Aqueous Bromomethane.
    Adluri AN; Murphy JN; Tozer T; Rowley CN
    J Phys Chem B; 2015 Oct; 119(42):13422-32. PubMed ID: 26419599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.