BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33032423)

  • 1. Structural and thermodynamic properties of the electrical double layer in slit nanopores: A Monte Carlo study.
    Lamperski S
    J Chem Phys; 2020 Oct; 153(13):134703. PubMed ID: 33032423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study.
    Lamperski S; Kaja M; Bhuiyan LB; Wu J; Henderson D
    J Chem Phys; 2013 Aug; 139(5):054703. PubMed ID: 23927277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo Study of a Planar Electric Double Layer Formed by Ions with Off-Center Charge.
    Lamperski S; Bhuiyan LB; Henderson D; Kaja M
    Langmuir; 2017 Oct; 33(42):11554-11560. PubMed ID: 28748702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations.
    Bossa GV; Caetano DLZ; de Carvalho SJ; Bohinc K; May S
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):113. PubMed ID: 30259300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of differential capacitance in the electric double layer.Symmetric valency 1:1 electrolytes.
    Islam MS; Lamperski S; Islam MM; Henderson D; Bhuiyan LB
    J Chem Phys; 2020 May; 152(20):204702. PubMed ID: 32486666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo study of molten salt with charge asymmetry near the electrode surface.
    Kłos J; Lamperski S
    J Chem Phys; 2014 Feb; 140(5):054703. PubMed ID: 24511964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores.
    Xing L; Vatamanu J; Borodin O; Bedrov D
    J Phys Chem Lett; 2013 Jan; 4(1):132-40. PubMed ID: 26291225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential capacitance of an electric double layer with asymmetric solvent-mediated interactions: mean-field theory and Monte Carlo simulations.
    Caetano DLZ; Bossa GV; de Oliveira VM; Brown MA; de Carvalho SJ; May S
    Phys Chem Chem Phys; 2017 Sep; 19(35):23971-23981. PubMed ID: 28831474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of electrical double-layer formation from mixtures of electrolytes inside nanopores.
    Hou CH; Taboada-Serrano P; Yiacoumi S; Tsouris C
    J Chem Phys; 2008 Jan; 128(4):044705. PubMed ID: 18247979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grand canonical Monte Carlo investigations of electrical double layer in molten salts.
    Lamperski S; Kłos J
    J Chem Phys; 2008 Oct; 129(16):164503. PubMed ID: 19045280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric double-layer charging in a cylindrical nanopore under closed confinement.
    Matse M; Berg P; Eikerling M
    J Chem Phys; 2020 Feb; 152(8):084103. PubMed ID: 32113335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic liquid near a charged wall: structure and capacitance of electrical double layer.
    Fedorov MV; Kornyshev AA
    J Phys Chem B; 2008 Sep; 112(38):11868-72. PubMed ID: 18729396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tail effect on the shape of an electrical double layer differential capacitance curve.
    Henderson D; Lamperski S; Bari Bhuiyan L; Wu J
    J Chem Phys; 2013 Apr; 138(14):144704. PubMed ID: 24981541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
    Haskins JB; Lawson JW
    J Chem Phys; 2016 May; 144(18):184707. PubMed ID: 27179500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size asymmetric hard spheres as a convenient model for the capacitance of the electrical double layer of an ionic liquid.
    Lamperski S; Sosnowska J; Bhuiyan LB; Henderson D
    J Chem Phys; 2014 Jan; 140(1):014704. PubMed ID: 24410234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-center charge model revisited: Electrical double layer with multivalent cations.
    Lamperski S; Bhuiyan LB; Henderson D
    J Chem Phys; 2018 Aug; 149(8):084706. PubMed ID: 30193502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    J Chem Phys; 2011 Feb; 134(7):074706. PubMed ID: 21341868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.