BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33032431)

  • 1. Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces.
    Aramburu-Trošelj BM; Bangle RE; Meyer GJ
    J Chem Phys; 2020 Oct; 153(13):134702. PubMed ID: 33032431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron Transfer Reorganization Energies in the Electrode-Electrolyte Double Layer.
    Bangle RE; Schneider J; Piechota EJ; Troian-Gautier L; Meyer GJ
    J Am Chem Soc; 2020 Jan; 142(2):674-679. PubMed ID: 31859498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer.
    Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ
    J Phys Chem B; 2015 Jun; 119(24):7698-711. PubMed ID: 25668488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization Energies for Interfacial Electron Transfer across Phenylene Ethynylene Rigid-Rod Bridges.
    Heidari M; Loague Q; Bangle RE; Galoppini E; Meyer GJ
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35205-35214. PubMed ID: 35862637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driving force dependent, photoinduced electron transfer at degenerately doped, optically transparent semiconductor nanoparticle interfaces.
    Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2014 Nov; 136(45):15869-72. PubMed ID: 25330285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts.
    Schneider J; Bangle RE; Swords WB; Troian-Gautier L; Meyer GJ
    J Am Chem Soc; 2019 Jun; 141(25):9758-9763. PubMed ID: 31194527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Evidence That the Solvent Barrier for Electron Transfer Is Absent in the Electric Double Layer.
    Bangle RE; Schneider J; Conroy DT; Aramburu-Trošelj BM; Meyer GJ
    J Am Chem Soc; 2020 Sep; 142(35):14940-14946. PubMed ID: 32786793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Molecular Orientation on Lateral and Interfacial Electron Transfer at Oxide Interfaces.
    Loague Q; Keller ND; Müller AV; Aramburu-Trošelj BM; Bangle RE; Schneider J; Sampaio RN; Polo AS; Meyer GJ
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34249-34262. PubMed ID: 37417666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst.
    Kessinger M; Soudackov AV; Schneider J; Bangle RE; Hammes-Schiffer S; Meyer GJ
    J Am Chem Soc; 2022 Nov; 144(44):20514-20524. PubMed ID: 36314899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced interfacial electron transfer within a mesoporous transparent conducting oxide film.
    Farnum BH; Morseth ZA; Lapides AM; Rieth AJ; Hoertz PG; Brennaman MK; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2014 Feb; 136(6):2208-11. PubMed ID: 24460093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that ΔS
    Troian-Gautier L; DiMarco BN; Sampaio RN; Marquard SL; Meyer GJ
    J Am Chem Soc; 2018 Feb; 140(8):3019-3029. PubMed ID: 29401397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces.
    Hamann TW; Gstrein F; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2005 Oct; 127(40):13949-54. PubMed ID: 16201817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies.
    Soler M; McCusker JK
    J Am Chem Soc; 2008 Apr; 130(14):4708-24. PubMed ID: 18341336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems.
    Meylemans HA; Lei CF; Damrauer NH
    Inorg Chem; 2008 May; 47(10):4060-76. PubMed ID: 18407628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Driving Force and Electron Accepting State Density Dependent Interfacial Electron Transfer Dynamics: Suppressed Fluorescence Blinking of Single Molecules on Indium Tin Oxide Semiconductor.
    Rao VG; Dhital B; Lu HP
    J Phys Chem B; 2016 Mar; 120(8):1685-97. PubMed ID: 26468609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Molecular Aggregation on Electron Transfer at the Perylene Diimide/Indium-Tin Oxide Interface.
    Zheng Y; Jradi FM; Parker TC; Barlow S; Marder SR; Saavedra SS
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34089-34097. PubMed ID: 27960436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of metal-metal coupling at a considerable distance by using 4-pyridinealdazine as a bridging ligand in polynuclear complexes of rhenium and ruthenium.
    Cattaneo M; Fagalde F; Katz NE; Leiva AM; Schmehl R
    Inorg Chem; 2006 Jan; 45(1):127-36. PubMed ID: 16390048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Charge-Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface.
    Sampaio RN; Troian-Gautier L; Meyer GJ
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15390-15394. PubMed ID: 30239080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial reactions of nano-structured Cu-doped indium oxide/indium tin oxide ohmic contacts to p-GaN.
    Yoon YJ; Chae SW; Kim BK; Park MJ; Kwak JS
    J Nanosci Nanotechnol; 2010 May; 10(5):3254-9. PubMed ID: 20358934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range electron transfer in myoglobin.
    Cowan JA; Upmacis RK; Beratan DN; Onuchic JN; Gray HB
    Ann N Y Acad Sci; 1988; 550():68-84. PubMed ID: 3245652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.