These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 33032536)
21. SinGAN-Seg: Synthetic training data generation for medical image segmentation. Thambawita V; Salehi P; Sheshkal SA; Hicks SA; Hammer HL; Parasa S; Lange T; Halvorsen P; Riegler MA PLoS One; 2022; 17(5):e0267976. PubMed ID: 35500005 [TBL] [Abstract][Full Text] [Related]
22. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
23. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305 [TBL] [Abstract][Full Text] [Related]
24. Creating High Fidelity Synthetic Pelvis Radiographs Using Generative Adversarial Networks: Unlocking the Potential of Deep Learning Models Without Patient Privacy Concerns. Khosravi B; Rouzrokh P; Mickley JP; Faghani S; Larson AN; Garner HW; Howe BM; Erickson BJ; Taunton MJ; Wyles CC J Arthroplasty; 2023 Oct; 38(10):2037-2043.e1. PubMed ID: 36535448 [TBL] [Abstract][Full Text] [Related]
25. A deep learning approach for fully automated cardiac shape modeling in tetralogy of Fallot. Govil S; Crabb BT; Deng Y; Dal Toso L; Puyol-Antón E; Pushparajah K; Hegde S; Perry JC; Omens JH; Hsiao A; Young AA; McCulloch AD J Cardiovasc Magn Reson; 2023 Feb; 25(1):15. PubMed ID: 36849960 [TBL] [Abstract][Full Text] [Related]
26. An Adversarial Network Architecture Using 2D U-Net Models for Segmentation of Left Ventricle from Cine Cardiac MRI. Upendra RR; Dangi S; Linte CA Funct Imaging Model Heart; 2019 Jun; 11504():415-424. PubMed ID: 32699845 [TBL] [Abstract][Full Text] [Related]
27. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sandfort V; Yan K; Pickhardt PJ; Summers RM Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403 [TBL] [Abstract][Full Text] [Related]
28. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276 [TBL] [Abstract][Full Text] [Related]
29. High-content image generation for drug discovery using generative adversarial networks. Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280 [TBL] [Abstract][Full Text] [Related]
30. Reconstruction of multicontrast MR images through deep learning. Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314 [TBL] [Abstract][Full Text] [Related]
31. Super-Resolution of Cardiac MR Cine Imaging using Conditional GANs and Unsupervised Transfer Learning. Xia Y; Ravikumar N; Greenwood JP; Neubauer S; Petersen SE; Frangi AF Med Image Anal; 2021 Jul; 71():102037. PubMed ID: 33910110 [TBL] [Abstract][Full Text] [Related]
32. Deep learning for whole-body medical image generation. Schaefferkoetter J; Yan J; Moon S; Chan R; Ortega C; Metser U; Berlin A; Veit-Haibach P Eur J Nucl Med Mol Imaging; 2021 Nov; 48(12):3817-3826. PubMed ID: 34021779 [TBL] [Abstract][Full Text] [Related]
33. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]
34. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805 [TBL] [Abstract][Full Text] [Related]
35. Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning. Hasan SMK; Linte CA Appl Sci (Basel); 2022 Dec; 12(23):. PubMed ID: 37125242 [TBL] [Abstract][Full Text] [Related]
36. Comparative analysis of U-Net and TLMDB GAN for the cardiovascular segmentation of the ventricles in the heart. Zhang Y; Feng J; Guo X; Ren Y Comput Methods Programs Biomed; 2022 Mar; 215():106614. PubMed ID: 35066315 [TBL] [Abstract][Full Text] [Related]
37. Logistic Regression-Based Model Is More Efficient Than U-Net Model for Reliable Whole Brain Magnetic Resonance Imaging Segmentation. Dieckhaus H; Meijboom R; Okar S; Wu T; Parvathaneni P; Mina Y; Chandran S; Waldman AD; Reich DS; Nair G Top Magn Reson Imaging; 2022 Jun; 31(3):31-39. PubMed ID: 35767314 [TBL] [Abstract][Full Text] [Related]
38. Automatic right ventricular segmentation for cine cardiac magnetic resonance images based on a new deep atlas network. Wang L; Su H; Liu P Med Phys; 2023 Nov; 50(11):7060-7070. PubMed ID: 37293874 [TBL] [Abstract][Full Text] [Related]
39. IAS-NET: Joint intraclassly adaptive GAN and segmentation network for unsupervised cross-domain in neonatal brain MRI segmentation. Li B; You X; Wang J; Peng Q; Yin S; Qi R; Ren Q; Hong Z Med Phys; 2021 Nov; 48(11):6962-6975. PubMed ID: 34494276 [TBL] [Abstract][Full Text] [Related]
40. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3D ultrasound. Orlando N; Gyacskov I; Gillies DJ; Guo F; Romagnoli C; D'Souza D; Cool DW; Hoover DA; Fenster A Phys Med Biol; 2022 Mar; 67(7):. PubMed ID: 35240585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]