BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33033333)

  • 1. Improved cis-Abienol production through increasing precursor supply in Escherichia coli.
    Cheng T; Zhao G; Xian M; Xie C
    Sci Rep; 2020 Oct; 10(1):16791. PubMed ID: 33033333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production.
    Li L; Wang X; Li X; Shi H; Wang F; Zhang Y; Li X
    J Agric Food Chem; 2019 Jun; 67(23):6523-6531. PubMed ID: 31117507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production.
    Zerbe P; Chiang A; Yuen M; Hamberger B; Hamberger B; Draper JA; Britton R; Bohlmann J
    J Biol Chem; 2012 Apr; 287(15):12121-31. PubMed ID: 22337889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning of a gene cluster encoding enzymes responsible for the mevalonate pathway from a terpenoid-antibiotic-producing Streptomyces strain.
    Hamano Y; Dairi T; Yamamoto M; Kawasaki T; Kaneda K; Kuzuyama T; Itoh N; Seto H
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1627-35. PubMed ID: 11515548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes.
    Sallaud C; Giacalone C; Töpfer R; Goepfert S; Bakaher N; Rösti S; Tissier A
    Plant J; 2012 Oct; 72(1):1-17. PubMed ID: 22672125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive cocci.
    Wilding EI; Brown JR; Bryant AP; Chalker AF; Holmes DJ; Ingraham KA; Iordanescu S; So CY; Rosenberg M; Gwynn MN
    J Bacteriol; 2000 Aug; 182(15):4319-27. PubMed ID: 10894743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes.
    Guo Z; Severson RF; Wagner GJ
    Arch Biochem Biophys; 1994 Jan; 308(1):103-8. PubMed ID: 8311442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel MVA-mediated pathway for isoprene production in engineered E. coli.
    Yang J; Nie Q; Liu H; Xian M; Liu H
    BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of mevalonate by a metabolically-engineered Escherichia coli.
    Tabata K; Hashimoto S
    Biotechnol Lett; 2004 Oct; 26(19):1487-91. PubMed ID: 15604784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Differential Expression of Mevalonate Pathway Genes in the Gut of the Bark Beetle
    Sarabia LE; López MF; Obregón-Molina G; Cano-Ramírez C; Sánchez-Martínez G; Zúñiga G
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31426479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli.
    Yang L; Jiang L; Li W; Yang Y; Zhang G; Luo Y
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1431-1441. PubMed ID: 28695386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterologous biosynthesis of triterpenoid ambrein in engineered Escherichia coli.
    Ke D; Caiyin Q; Zhao F; Liu T; Lu W
    Biotechnol Lett; 2018 Feb; 40(2):399-404. PubMed ID: 29204767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase.
    Ignea C; Trikka FA; Nikolaidis AK; Georgantea P; Ioannou E; Loupassaki S; Kefalas P; Kanellis AK; Roussis V; Makris AM; Kampranis SC
    Metab Eng; 2015 Jan; 27():65-75. PubMed ID: 25446975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of the "Archaeal" Mevalonate Pathway from the Methanogenic Archaeon Methanosarcina mazei in Escherichia coli Cells.
    Yoshida R; Yoshimura T; Hemmi H
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multienzyme mevalonate pathway bioreactor.
    Sutherlin A; Rodwell VW
    Biotechnol Bioeng; 2004 Aug; 87(4):546-51. PubMed ID: 15286992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Functional Analysis of Two Novel Genes-Geranylgeranyl Pyrophosphate Synthase Gene (
    Shi S; Chang Y; Yu J; Chen H; Wang Q; Bi Y
    Mar Drugs; 2023 Apr; 21(4):. PubMed ID: 37103388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA sequencing reveals transcriptomic changes in tobacco (Nicotiana tabacum) following NtCPS2 knockdown.
    He L; Liu H; Cheng C; Xu M; He L; Li L; Yao J; Zhang W; Zhai Z; Luo Q; Sun J; Yang T; Xu S
    BMC Genomics; 2021 Jun; 22(1):467. PubMed ID: 34162328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cholesterol synthesis in rat adrenal gland through coordinate control of 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase activities.
    Balasubramaniam S; Goldstein JL; Brown MS
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1421-5. PubMed ID: 16260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases.
    Ma SM; Garcia DE; Redding-Johanson AM; Friedland GD; Chan R; Batth TS; Haliburton JR; Chivian D; Keasling JD; Petzold CJ; Lee TS; Chhabra SR
    Metab Eng; 2011 Sep; 13(5):588-97. PubMed ID: 21810477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.