These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33033476)

  • 1. The Influence of the Stimulus Design on the Harmonic Components of the Steady-State Visual Evoked Potential.
    Solf B; Schramm S; Blum MC; Klee S
    Front Hum Neurosci; 2020; 14():343. PubMed ID: 33033476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrigendum: The Influence of the Stimulus Design on the Harmonic Components of the Steady-State Visual Evoked Potential.
    Solf B; Schramm S; Blum MC; Klee S
    Front Hum Neurosci; 2020; 14():644304. PubMed ID: 33574745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maturation of steady-state flicker VEPs in infants: fundamental and harmonic temporal response frequencies.
    Pieh C; McCulloch DL; Shahani U; Mactier H; Bach M
    Doc Ophthalmol; 2009 Apr; 118(2):109-19. PubMed ID: 18777183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the performance of six stimulus paradigms in visual acuity assessment based on steady-state visual evoked potentials.
    Zheng X; Xu G; Wu Y; Wang Y; Du C; Wu Y; Zhang S; Han C
    Doc Ophthalmol; 2020 Dec; 141(3):237-251. PubMed ID: 32405730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Origin of SSVEP Spectra-A Combined Experimental and Modeling Study.
    Labecki M; Kus R; Brzozowska A; Stacewicz T; Bhattacharya BS; Suffczynski P
    Front Comput Neurosci; 2016; 10():129. PubMed ID: 28082888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical contrast gain control in human spatial vision.
    Bobak P; Bodis-Wollner I; Marx MS
    J Physiol; 1988 Nov; 405():421-37. PubMed ID: 3255797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological correlates of vernier and relative motion mechanisms in human visual cortex.
    Norcia AM; Wesemann W; Manny RE
    Vis Neurosci; 1999; 16(6):1123-31. PubMed ID: 10614592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of steady-state visual evoked potentials elicited by luminance flicker in human occipital cortex: An electrocorticography study.
    Wittevrongel B; Khachatryan E; Fahimi Hnazaee M; Carrette E; De Taeye L; Meurs A; Boon P; Van Roost D; Van Hulle MM
    Neuroimage; 2018 Jul; 175():315-326. PubMed ID: 29630994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Modulation of Steady-State Visual Evoked Potentials.
    Labecki M; Nowicka MM; Suffczynski P
    Int J Neural Syst; 2019 Apr; 29(3):1850050. PubMed ID: 30587045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective measurement of forward-scattered light in the human eye: An electrophysiological approach.
    Solf B; Schramm S; Link D; Klee S
    PLoS One; 2019; 14(4):e0214850. PubMed ID: 30947303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An SSVEP-based BCI using high duty-cycle visual flicker.
    Lee PL; Yeh CL; Cheng JY; Yang CY; Lan GY
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3350-9. PubMed ID: 21788179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The graph theoretical analysis of the SSVEP harmonic response networks.
    Zhang Y; Guo D; Cheng K; Yao D; Xu P
    Cogn Neurodyn; 2015 Jun; 9(3):305-15. PubMed ID: 25972979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions.
    Chien YY; Lin FC; Zao JK; Chou CC; Huang YP; Kuo HY; Wang Y; Jung TP; Shieh HD
    J Neural Eng; 2017 Feb; 14(1):016018. PubMed ID: 28000607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier analysis of steady-state visual evoked potentials in subjects with normal and defective stereo vision.
    Johansson B; Jakobsson P
    Doc Ophthalmol; 2000 Nov; 101(3):233-46. PubMed ID: 11291952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNR analysis of high-frequency steady-state visual evoked potentials from the foveal and extrafoveal regions of human retina.
    Lin FC; Zao JK; Tu KC; Wang Y; Huang YP; Chuang CW; Kuo HY; Chien YY; Chou CC; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1810-4. PubMed ID: 23366263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.