BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33033873)

  • 21. One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle.
    Wan F; Maltesen MJ; Andersen SK; Bjerregaard S; Foged C; Rantanen J; Yang M
    Pharm Res; 2014 Aug; 31(8):1967-77. PubMed ID: 24549821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A quality by design approach to develop topical creams via hot-melt extrusion technology.
    Mendonsa NS; Pradhan A; Sharma P; Prado RMB; Murthy SN; Kundu S; Repka MA
    Eur J Pharm Sci; 2019 Aug; 136():104948. PubMed ID: 31173868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol.
    Budhian A; Siegel SJ; Winey KI
    J Microencapsul; 2005 Nov; 22(7):773-85. PubMed ID: 16421087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards a Continuous Manufacturing Process of Protein-Loaded Polymeric Nanoparticle Powders.
    Schiller S; Hanefeld A; Schneider M; Lehr CM
    AAPS PharmSciTech; 2020 Oct; 21(7):269. PubMed ID: 33025335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quality by design approach for fabrication of extended-release buccal films for xerostomia employing hot-melt extrusion technology.
    Elkanayati RM; Darwesh AY; Taha I; Wang H; Uttreja P; Vemula SK; Chambliss WG; Repka MA
    Eur J Pharm Biopharm; 2024 Jul; 200():114335. PubMed ID: 38768765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery.
    Wang N; Wu XS; Li JK
    Pharm Res; 1999 Sep; 16(9):1430-5. PubMed ID: 10496661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and characterization of biodegradable urea-loaded microparticles as an approach for transdermal delivery.
    Haddadi A; Farboud ES; Erfan M; Aboofazeli R
    J Microencapsul; 2006 Sep; 23(6):698-712. PubMed ID: 17118885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microencapsulation of dissociable human growth hormone aggregates within poly(D,L-lactic-co-glycolic acid) microparticles for sustained release.
    Kim HK; Park TG
    Int J Pharm; 2001 Oct; 229(1-2):107-16. PubMed ID: 11604263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Celecoxib-loaded poly(D,L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure.
    McCarron PA; Donnelly RF; Marouf W
    J Microencapsul; 2006 Aug; 23(5):480-98. PubMed ID: 16980271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustained release dosage form of noscapine HCl using hot melt extrusion (HME) technique: formulation and pharmacokinetics.
    Bagde A; Patel N; Patel K; Nottingham E; Singh M
    Drug Deliv Transl Res; 2021 Jun; 11(3):1156-1165. PubMed ID: 32880879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles.
    Yoo J; Won YY
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6053-6062. PubMed ID: 33449671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insight into Nanoscale Network of Spray-Dried Polymeric Particles: Role of Polymer Molecular Conformation.
    Wan F; Larsen FH; Bordallo HN; Foged C; Rantanen J; Yang M
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36686-36692. PubMed ID: 30211530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of PLGA End Groups on the Release Profile of Dexamethasone from Ocular Implants.
    Saraf I; Kushwah V; Alva C; Koutsamanis I; Rattenberger J; Schroettner H; Mayrhofer C; Modhave D; Braun M; Werner B; Zangger K; Paudel A
    Mol Pharm; 2023 Feb; 20(2):1307-1322. PubMed ID: 36680524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Comparison Between Lab-Scale and Hot-Melt-Extruder-Based Anti-inflammatory Ointment Manufacturing.
    Thakkar R; Ashour EA; Shukla A; Wang R; Chambliss WG; Bandari S; Murthy N; Repka MA
    AAPS PharmSciTech; 2020 Jul; 21(5):200. PubMed ID: 32676978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A smart approach to enable preclinical studies in pharmaceutical industry: PLGA-based extended release formulation platform for subcutaneous applications.
    Strack P; Külzer R; Sommer F; Bretschneider T; Merkel OM; Grube A
    Drug Dev Ind Pharm; 2020 Apr; 46(4):635-645. PubMed ID: 32163304
    [No Abstract]   [Full Text] [Related]  

  • 36. Potential Roles of the Glass Transition Temperature of PLGA Microparticles in Drug Release Kinetics.
    Park K; Otte A; Sharifi F; Garner J; Skidmore S; Park H; Jhon YK; Qin B; Wang Y
    Mol Pharm; 2021 Jan; 18(1):18-32. PubMed ID: 33331774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled release of NFkappaB decoy oligonucleotides from biodegradable polymer microparticles.
    Zhu X; Lu L; Currier BL; Windebank AJ; Yaszemski MJ
    Biomaterials; 2002 Jul; 23(13):2683-92. PubMed ID: 12059017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants.
    Bode C; Kranz H; Fivez A; Siepmann F; Siepmann J
    J Control Release; 2019 Jul; 306():97-107. PubMed ID: 31150749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formulation and in-vitro characterization of retinoic acid loaded poly (lactic-co-glycolic acid) microspheres.
    Cirpanli Y; Unlü N; Caliş S; Hincal AA
    J Microencapsul; 2005 Dec; 22(8):877-89. PubMed ID: 16423759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein loaded biodegradable microspheres based on PLGA-protein bioconjugates.
    Nam YS; Park TG
    J Microencapsul; 1999; 16(5):625-37. PubMed ID: 10499842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.