These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33034446)

  • 1. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells.
    Hur J; Park I; Lim KM; Doh J; Cho SG; Chung AJ
    ACS Nano; 2020 Nov; 14(11):15094-15106. PubMed ID: 33034446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient Transfection of Human Primary T Lymphocytes Using Droplet-Enabled Mechanoporation.
    Joo B; Hur J; Kim GB; Yun SG; Chung AJ
    ACS Nano; 2021 Aug; 15(8):12888-12898. PubMed ID: 34142817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering.
    Kwon C; Chung AJ
    Lab Chip; 2023 Mar; 23(7):1758-1767. PubMed ID: 36727443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator.
    Deng Y; Kizer M; Rada M; Sage J; Wang X; Cheon DJ; Chung AJ
    Nano Lett; 2018 Apr; 18(4):2705-2710. PubMed ID: 29569926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic and Nanofluidic Intracellular Delivery.
    Hur J; Chung AJ
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004595. PubMed ID: 34096197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced intracellular delivery via coordinated acoustically driven shear mechanoporation and electrophoretic insertion.
    Meacham JM; Durvasula K; Degertekin FL; Fedorov AG
    Sci Rep; 2018 Feb; 8(1):3727. PubMed ID: 29487375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically Stable and Scalable Nanoengineering of Human Primary T Cells via Cell Mechanoporation.
    Hur J; Kim H; Kim U; Kim GB; Kim J; Joo B; Cho D; Lee DS; Chung AJ
    Nano Lett; 2023 Aug; 23(16):7341-7349. PubMed ID: 37506062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery.
    Dixit HG; Starr R; Dundon ML; Pairs PI; Yang X; Zhang Y; Nampe D; Ballas CB; Tsutsui H; Forman SJ; Brown CE; Rao MP
    Nano Lett; 2020 Feb; 20(2):860-867. PubMed ID: 31647675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Mechanoporation: Current Progress and Applications in Stem Cells.
    Wang R; Wang Z; Tong L; Wang R; Yao S; Chen D; Hu H
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HiViPore: a highly viable in-flow compression for a one-step cell mechanoporation in microfluidics to induce a free delivery of nano- macro-cargoes.
    Maremonti MI; Panzetta V; Netti PA; Causa F
    J Nanobiotechnology; 2024 Jul; 22(1):441. PubMed ID: 39068464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A laminar flow electroporation system for efficient DNA and siRNA delivery.
    Wei Z; Zhao D; Li X; Wu M; Wang W; Huang H; Wang X; Du Q; Liang Z; Li Z
    Anal Chem; 2011 Aug; 83(15):5881-7. PubMed ID: 21678996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field.
    Geng T; Zhan Y; Lu C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2579-82. PubMed ID: 23366452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly efficient and safe gene delivery platform based on polyelectrolyte core-shell nanoparticles for hard-to-transfect clinically relevant cell types.
    Tarakanchikova Y; Muslimov A; Sergeev I; Lepik K; Yolshin N; Goncharenko A; Vasilyev K; Eliseev I; Bukatin A; Sergeev V; Pavlov S; Popov A; Meglinski I; Afanasiev B; Parakhonskiy B; Sukhorukov G; Gorin D
    J Mater Chem B; 2020 Oct; 8(41):9576-9588. PubMed ID: 33005912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Benefits of Microfluidic-Assisted Preparation of Polymeric Nanoparticles for DNA Delivery.
    Zoqlam R; Morris CJ; Akbar M; Alkilany AM; Hamdallah SI; Belton P; Qi S
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112243. PubMed ID: 34225883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable continuous-flow electroporation platform enabling T cell transfection for cellular therapy manufacturing.
    VanderBurgh JA; Corso TN; Levy SL; Craighead HG
    Sci Rep; 2023 Apr; 13(1):6857. PubMed ID: 37185305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipoplex-Mediated Single-Cell Transfection via Droplet Microfluidics.
    Li X; Aghaamoo M; Liu S; Lee DH; Lee AP
    Small; 2018 Oct; 14(40):e1802055. PubMed ID: 30199137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery.
    Brooks J; Minnick G; Mukherjee P; Jaberi A; Chang L; Espinosa HD; Yang R
    Small; 2020 Dec; 16(51):e2004917. PubMed ID: 33241661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular Nanomaterial Delivery
    Kang G; Carlson DW; Kang TH; Lee S; Haward SJ; Choi I; Shen AQ; Chung AJ
    ACS Nano; 2020 Mar; 14(3):3048-3058. PubMed ID: 32069037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System.
    Li X; Ma Y; Xue Y; Zhang X; Lv L; Quan Q; Chen Y; Yu G; Liang Z; Zhang X; Weng D; Chen L; Chen K; Han X; Wang J
    ACS Nano; 2023 Feb; 17(3):2101-2113. PubMed ID: 36479877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different Influences of Lipofection and Electrotransfection on In Vitro Gene Delivery to Primary Cultured Cortex Neurons.
    Zhang XS; Huang J; Zhan CQ; Chen J; Li T; Kaye AD; Wu SX; Xiao L
    Pain Physician; 2016 Mar; 19(3):189-96. PubMed ID: 27008293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.