BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 33034448)

  • 1. Temporal Control of Efficient
    Yang B; Kwon K; Jana S; Kim S; Avila-Crump S; Tae G; Mehl RA; Kwon I
    Bioconjug Chem; 2020 Oct; 31(10):2456-2464. PubMed ID: 33034448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions.
    Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M
    Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiluminescent probe for the detection of inverse electron demand Diels-Alder reaction between tetrazine and trans-Cyclooctene.
    Wu K; Royzen M
    Bioorg Med Chem; 2021 Oct; 47():116400. PubMed ID: 34530297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of IEDDA bioorthogonal system: Efficient process to improve trans-cyclooctene/tetrazine interaction.
    Béquignat JB; Ty N; Rondon A; Taiariol L; Degoul F; Canitrot D; Quintana M; Navarro-Teulon I; Miot-Noirault E; Boucheix C; Chezal JM; Moreau E
    Eur J Med Chem; 2020 Oct; 203():112574. PubMed ID: 32683167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry.
    Pagel M
    J Pept Sci; 2019 Jan; 25(1):e3141. PubMed ID: 30585397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrazine- trans-Cyclooctene Chemistry Applied to Fabricate Self-Assembled Fluorescent and Radioactive Nanoparticles for in Vivo Dual Mode Imaging.
    van Onzen AHAM; Rossin R; Schenning APHJ; Nicolay K; Milroy LG; Robillard MS; Brunsveld L
    Bioconjug Chem; 2019 Mar; 30(3):547-551. PubMed ID: 30731039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse electron demand Diels-Alder reactions in chemical biology.
    Oliveira BL; Guo Z; Bernardes GJL
    Chem Soc Rev; 2017 Aug; 46(16):4895-4950. PubMed ID: 28660957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Analysis and Optimization of Site-Specific Protein Bioconjugation in Mammalian Cells.
    Ryan A; Shade O; Bardhan A; Bartnik A; Deiters A
    Bioconjug Chem; 2022 Dec; 33(12):2361-2369. PubMed ID: 36459098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded unstrained olefins for live cell labeling with tetrazine dyes.
    Lee YJ; Kurra Y; Yang Y; Torres-Kolbus J; Deiters A; Liu WR
    Chem Commun (Camb); 2014 Nov; 50(86):13085-8. PubMed ID: 25224663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetrazine-trans-cyclooctene Mediated Conjugation of Antibodies to Microtubules Facilitates Subpicomolar Protein Detection.
    Chaudhuri S; Korten T; Diez S
    Bioconjug Chem; 2017 Apr; 28(4):918-922. PubMed ID: 28267922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Synthesis, Conjugation, and Reactivity of Novel
    Longo B; Zanato C; Piras M; Dall'Angelo S; Windhorst AD; Vugts DJ; Baldassarre M; Zanda M
    Bioconjug Chem; 2020 Sep; 31(9):2201-2210. PubMed ID: 32786505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity.
    Blackman ML; Royzen M; Fox JM
    J Am Chem Soc; 2008 Oct; 130(41):13518-9. PubMed ID: 18798613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse-Electron-Demand Diels-Alder Reactions for the Synthesis of Pyridazines on DNA.
    Li H; Sun Z; Wu W; Wang X; Zhang M; Lu X; Zhong W; Dai D
    Org Lett; 2018 Nov; 20(22):7186-7191. PubMed ID: 30365326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-Specific Glycoconjugation of Protein via Bioorthogonal Tetrazine Cycloaddition with a Genetically Encoded trans-Cyclooctene or Bicyclononyne.
    Machida T; Lang K; Xue L; Chin JW; Winssinger N
    Bioconjug Chem; 2015 May; 26(5):802-6. PubMed ID: 25897481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrazine-Triggered Release of Carboxylic-Acid-Containing Molecules for Activation of an Anti-inflammatory Drug.
    Davies S; Qiao L; Oliveira BL; Navo CD; Jiménez-Osés G; Bernardes GJL
    Chembiochem; 2019 Jun; 20(12):1541-1546. PubMed ID: 30773780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ideal Bioorthogonal Reactions Using A Site-Specifically Encoded Tetrazine Amino Acid.
    Blizzard RJ; Backus DR; Brown W; Bazewicz CG; Li Y; Mehl RA
    J Am Chem Soc; 2015 Aug; 137(32):10044-7. PubMed ID: 26237426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioorthogonal micellar nanoreactors for prodrug cancer therapy using an inverse-electron-demand Diels-Alder reaction.
    Suehiro F; Fujii S; Nishimura T
    Chem Commun (Camb); 2022 Jun; 58(50):7026-7029. PubMed ID: 35642953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
    Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM
    Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (18)F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels-Alder Click Chemistry.
    Meyer JP; Houghton JL; Kozlowski P; Abdel-Atti D; Reiner T; Pillarsetty NV; Scholz WW; Zeglis BM; Lewis JS
    Bioconjug Chem; 2016 Feb; 27(2):298-301. PubMed ID: 26479967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.