These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33034483)

  • 1. Self-Guiding of Long-Wave Infrared Laser Pulses Mediated by Avalanche Ionization.
    Woodbury D; Goffin A; Schwartz RM; Isaacs J; Milchberg HM
    Phys Rev Lett; 2020 Sep; 125(13):133201. PubMed ID: 33034483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memory effects in the long-wave infrared avalanche ionization of gases: a review of recent progress.
    Wright EM; Koch SW; Kolesik M; Moloney JV
    Rep Prog Phys; 2019 Jun; 82(6):064401. PubMed ID: 30991367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collapse arrest and self-guiding of femtosecond pulses.
    Kovachev LM
    Opt Express; 2007 Aug; 15(16):10318-23. PubMed ID: 19547381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of intense short laser pulses in the atmosphere.
    Sprangle P; Peñano JR; Hafizi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046418. PubMed ID: 12443341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of space-time self-focusing of a femtosecond relativistic laser pulse in an underdense plasma.
    Lontano M; Murusidze I
    Opt Express; 2003 Feb; 11(3):248-58. PubMed ID: 19461730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-focusing and self-compression of intense pulses via ionization-induced spatiotemporal reshaping.
    Gao X; Shim B
    Opt Lett; 2020 Dec; 45(23):6434-6437. PubMed ID: 33258830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact-ionization mediated self-focusing of long-wavelength infrared pulses in gases.
    Gao X; Shim B
    Opt Lett; 2019 Feb; 44(4):827-830. PubMed ID: 30767997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and low-density plasmas.
    Cain CP; Thomas RJ; Noojin GD; Stolarski DJ; Kennedy PK; Buffington GD; Rockwell BA
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):101-12. PubMed ID: 15241612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-shot measurement of the nonlinear refractive index of air at 9.2 µm with a picosecond terawatt CO
    Polyanskiy MN; Babzien M; Pogorelsky IV; Kupfer R; Vodopyanov KL; Palmer MA
    Opt Lett; 2021 May; 46(9):2067-2070. PubMed ID: 33929420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wakefield generation and GeV acceleration in tapered plasma channels.
    Sprangle P; Hafizi B; Peñano JR; Hubbard RF; Ting A; Moore CI; Gordon DF; Zigler A; Kaganovich D; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056405. PubMed ID: 11415017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-guided propagation of ultrashort IR laser pulses in fused silica.
    Tzortzakis S; Sudrie L; Franco M; Prade B; Mysyrowicz A; Couairon A; Bergé L
    Phys Rev Lett; 2001 Nov; 87(21):213902. PubMed ID: 11736340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-guiding of ultrashort, relativistically intense laser pulses through underdense plasmas in the blowout regime.
    Ralph JE; Marsh KA; Pak AE; Lu W; Clayton CE; Fang F; Mori WB; Joshi C
    Phys Rev Lett; 2009 May; 102(17):175003. PubMed ID: 19518790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Long-Wave Infrared Laser-Induced Breakdown Spectroscopy Employing 1-D and 2-D Focal Plane Array Detectors.
    Yang CS; Jin F; Trivedi S; Hommerich U; Samuels AC
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-wavelength-infrared laser filamentation in solids in the near-single-cycle regime.
    Qu S; Chaudhary Nagar G; Li W; Liu K; Zou X; Hon Luen S; Dempsey D; Hong KH; Jie Wang Q; Zhang Y; Shim B; Liang H
    Opt Lett; 2020 Apr; 45(8):2175-2178. PubMed ID: 32287187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionization-induced self-compression of tightly focused femtosecond laser pulses.
    He ZH; Nees JA; Hou B; Krushelnick K; Thomas AG
    Phys Rev Lett; 2014 Dec; 113(26):263904. PubMed ID: 25615338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscale nanosecond laser-induced optical breakdown in water.
    Kudryashov SI; Zvorykin VD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036404. PubMed ID: 18851166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water.
    Hafizi B; Palastro JP; Peñano JR; Gordon DF; Jones TG; Helle MH; Kaganovich D
    Opt Lett; 2015 Apr; 40(7):1556-8. PubMed ID: 25831383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-wave infrared picosecond parametric amplifier based on Raman shifter technology.
    Welch EC; Tochitsky SY; Pigeon JJ; Joshi C
    Opt Express; 2018 Mar; 26(5):5154-5163. PubMed ID: 29529723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guiding of relativistic laser pulses by preformed plasma channels.
    Geddes CG; Toth C; van Tilborg J; Esarey E; Schroeder CB; Cary J; Leemans WP
    Phys Rev Lett; 2005 Sep; 95(14):145002. PubMed ID: 16241663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system.
    Yang CS; Jin F; Trivedi S; Brown E; Hommerich U; Khurgin JB; Samuels AC
    Appl Opt; 2016 Nov; 55(32):9166-9172. PubMed ID: 27857309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.