These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 33034598)

  • 1.
    Schröder-Turk GE
    Faraday Discuss; 2020 Oct; 223(0):307-323. PubMed ID: 33034598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi.
    Michielsen K; De Raedt H; Stavenga DG
    J R Soc Interface; 2010 May; 7(46):765-71. PubMed ID: 19828506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butterfly Wing Hears Sound: Acoustic Detection Using Biophotonic Nanostructure.
    Zhou L; He J; Li W; He P; Ye Q; Fu B; Tao P; Song C; Wu J; Deng T; Shang W
    Nano Lett; 2019 Apr; 19(4):2627-2633. PubMed ID: 30884236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales.
    Singer A; Boucheron L; Dietze SH; Jensen KE; Vine D; McNulty I; Dufresne ER; Prum RO; Mochrie SG; Shpyrko OG
    Sci Adv; 2016 Jun; 2(6):e1600149. PubMed ID: 27386575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development.
    Wilts BD; Apeleo Zubiri B; Klatt MA; Butz B; Fischer MG; Kelly ST; Spiecker E; Steiner U; Schröder-Turk GE
    Sci Adv; 2017 Apr; 3(4):e1603119. PubMed ID: 28508050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.
    Saranathan V; Osuji CO; Mochrie SG; Noh H; Narayanan S; Sandy A; Dufresne ER; Prum RO
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11676-81. PubMed ID: 20547870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic gyroid nanostructures exceeding their natural origins.
    Gan Z; Turner MD; Gu M
    Sci Adv; 2016 May; 2(5):e1600084. PubMed ID: 27386542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary algorithms converge towards evolved biological photonic structures.
    Barry MA; Berthier V; Wilts BD; Cambourieux MC; Bennet P; Pollès R; Teytaud O; Centeno E; Biais N; Moreau A
    Sci Rep; 2020 Jul; 10(1):12024. PubMed ID: 32694514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subtractive Structural Modification of Morpho Butterfly Wings.
    Shen Q; He J; Ni M; Song C; Zhou L; Hu H; Zhang R; Luo Z; Wang G; Tao P; Deng T; Shang W
    Small; 2015 Nov; 11(42):5705-11. PubMed ID: 26397977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finely tunable dynamical coloration using bicontinuous micrometer-domains.
    Xi Y; Zhang F; Ma Y; Prabhu VM; Liu Y
    Nat Commun; 2022 Jun; 13(1):3619. PubMed ID: 35750660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings.
    Barrera-Patiño CP; Vollet-Filho JD; Teixeira-Rosa RG; Quiroz HP; Dussan A; Inada NM; Bagnato VS; Rey-González RR
    Sci Rep; 2020 Apr; 10(1):5786. PubMed ID: 32238903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.
    Garrett NL; Sekine R; Dixon MW; Tilley L; Bambery KR; Wood BR
    Phys Chem Chem Phys; 2015 Sep; 17(33):21164-8. PubMed ID: 25491490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophotonics: the big picture.
    Marcu L; Boppart SA; Hutchinson MR; Popp J; Wilson BC
    J Biomed Opt; 2017 Dec; 23(2):1-7. PubMed ID: 29275543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Color generation in butterfly wings and fabrication of such structures.
    Wong TH; Gupta MC; Robins B; Levendusky TL
    Opt Lett; 2003 Dec; 28(23):2342-4. PubMed ID: 14680176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Detection of Vapor Mixtures Using Structurally Colored Butterfly and Moth Wings.
    Piszter G; Kertész K; Bálint Z; Biró LP
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.
    Chung K; Yu S; Heo CJ; Shim JW; Yang SM; Han MG; Lee HS; Jin Y; Lee SY; Park N; Shin JH
    Adv Mater; 2012 May; 24(18):2375-9. PubMed ID: 22489053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural color in
    Thayer RC; Allen FI; Patel NH
    Elife; 2020 Apr; 9():. PubMed ID: 32254023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butterfly effects: novel functional materials inspired from the wings scales.
    Zhang W; Gu J; Liu Q; Su H; Fan T; Zhang D
    Phys Chem Chem Phys; 2014 Oct; 16(37):19767-80. PubMed ID: 25087928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors.
    Wang CS; Chang TY; Lin TY; Chen YF
    Sci Rep; 2014 Oct; 4():6736. PubMed ID: 25338507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protean palette: colour materials and mixing in birds and butterflies.
    Shawkey MD; Morehouse NI; Vukusic P
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S221-31. PubMed ID: 19141430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.