BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33035204)

  • 21. LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes.
    Collier O; Stoven V; Vert JP
    PLoS Comput Biol; 2019 Sep; 15(9):e1007381. PubMed ID: 31568528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracting dynamics from static cancer expression data.
    Gupta A; Bar-Joseph Z
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):172-82. PubMed ID: 18451427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulated annealing based algorithm for identifying mutated driver pathways in cancer.
    Li HT; Zhang YL; Zheng CH; Wang HQ
    Biomed Res Int; 2014; 2014():375980. PubMed ID: 24982873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inferring the paths of somatic evolution in cancer.
    Misra N; Szczurek E; Vingron M
    Bioinformatics; 2014 Sep; 30(17):2456-63. PubMed ID: 24812340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-platform comparison and visualisation of gene expression data using co-inertia analysis.
    Culhane AC; Perrière G; Higgins DG
    BMC Bioinformatics; 2003 Nov; 4():59. PubMed ID: 14633289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of algorithms for the detection of cancer drivers at subgene resolution.
    Porta-Pardo E; Kamburov A; Tamborero D; Pons T; Grases D; Valencia A; Lopez-Bigas N; Getz G; Godzik A
    Nat Methods; 2017 Aug; 14(8):782-788. PubMed ID: 28714987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inference of tumor phylogenies from genomic assays on heterogeneous samples.
    Subramanian A; Shackney S; Schwartz R
    J Biomed Biotechnol; 2012; 2012():797812. PubMed ID: 22654484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach.
    Rahimi M; Teimourpour B; Marashi SA
    Comput Biol Med; 2019 Nov; 114():103362. PubMed ID: 31561101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.
    Zhang J; Liu J; Sun J; Chen C; Foltz G; Lin B
    Brief Bioinform; 2014 Mar; 15(2):244-55. PubMed ID: 23818492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational approaches for the identification of cancer genes and pathways.
    Dimitrakopoulos CM; Beerenwinkel N
    Wiley Interdiscip Rev Syst Biol Med; 2017 Jan; 9(1):. PubMed ID: 27863091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of genes with absolute mRNA abundances changes in tumor cells with varied transcriptome sizes.
    Cai H; Li X; He J; Zhou W; Song K; Guo Y; Liu H; Guan Q; Yan H; Wang X; Guo Z
    BMC Genomics; 2019 Feb; 20(1):134. PubMed ID: 30760197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations.
    Dash S; Kinney NA; Varghese RT; Garner HR; Feng WC; Anandakrishnan R
    Sci Rep; 2019 Jan; 9(1):1005. PubMed ID: 30700767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DriverDBv2: a database for human cancer driver gene research.
    Chung IF; Chen CY; Su SC; Li CY; Wu KJ; Wang HW; Cheng WC
    Nucleic Acids Res; 2016 Jan; 44(D1):D975-9. PubMed ID: 26635391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A probabilistic method for leveraging functional annotations to enhance estimation of the temporal order of pathway mutations during carcinogenesis.
    Wang M; Yu T; Liu J; Chen L; Stromberg AJ; Villano JL; Arnold SM; Liu C; Wang C
    BMC Bioinformatics; 2019 Dec; 20(1):620. PubMed ID: 31791231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Cancer Driver Genes from a Custom Set of Next Generation Sequencing Data.
    Liu SH; Cheng WC
    Methods Mol Biol; 2019; 1907():19-36. PubMed ID: 30542988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network control principles for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Akutsu T; Chen L
    Brief Bioinform; 2020 Sep; 21(5):1641-1662. PubMed ID: 31711128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating mutation and gene expression cross-sectional data to infer cancer progression.
    Fleck JL; Pavel AB; Cassandras CG
    BMC Syst Biol; 2016 Jan; 10():12. PubMed ID: 26810975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.