BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33035204)

  • 41. Dynamic changes of driver genes' mutations across clinical stages in nine cancer types.
    Li X
    Cancer Med; 2016 Jul; 5(7):1556-65. PubMed ID: 26992457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of Local Clusters of Mutation Hotspots in Cancer-Related Genes and Their Biological Relevance.
    Rhee JK; Yoo J; Kim KR; Kim J; Lee YJ; Chul Cho B; Kim TM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1656-1662. PubMed ID: 29993813
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.
    Anoosha P; Sakthivel R; Michael Gromiha M
    Biochim Biophys Acta; 2016 Feb; 1862(2):155-65. PubMed ID: 26581171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In silico learning of tumor evolution through mutational time series.
    Auslander N; Wolf YI; Koonin EV
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9501-9510. PubMed ID: 31015295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene selection for classification of cancers using probabilistic model building genetic algorithm.
    Paul TK; Iba H
    Biosystems; 2005 Dec; 82(3):208-25. PubMed ID: 16112804
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discovery of co-occurring driver pathways in cancer.
    Zhang J; Wu LY; Zhang XS; Zhang S
    BMC Bioinformatics; 2014 Aug; 15(1):271. PubMed ID: 25106096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. gpps: an ILP-based approach for inferring cancer progression with mutation losses from single cell data.
    Ciccolella S; Soto Gomez M; Patterson MD; Della Vedova G; Hajirasouliha I; Bonizzoni P
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):413. PubMed ID: 33297943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Human synthetic lethal inference as potential anti-cancer target gene detection.
    Conde-Pueyo N; Munteanu A; Solé RV; Rodríguez-Caso C
    BMC Syst Biol; 2009 Dec; 3():116. PubMed ID: 20015360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of mutated driver pathways in cancer using a multi-objective optimization model.
    Zheng CH; Yang W; Chong YW; Xia JF
    Comput Biol Med; 2016 May; 72():22-9. PubMed ID: 26995027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient sampling for Bayesian inference of conjunctive Bayesian networks.
    Sakoparnig T; Beerenwinkel N
    Bioinformatics; 2012 Sep; 28(18):2318-24. PubMed ID: 22782551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions.
    Treviño V; Martínez-Ledesma E; Tamez-Peña J
    Sci Rep; 2017 Feb; 7():43350. PubMed ID: 28240231
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identifying modules of cooperating cancer drivers.
    Klein MI; Cannataro VL; Townsend JP; Newman S; Stern DF; Zhao H
    Mol Syst Biol; 2021 Mar; 17(3):e9810. PubMed ID: 33769711
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations.
    Ryslik GA; Cheng Y; Cheung KH; Bjornson RD; Zelterman D; Modis Y; Zhao H
    BMC Bioinformatics; 2014 Jul; 15():231. PubMed ID: 24990767
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Power and pitfalls of computational methods for inferring clone phylogenies and mutation orders from bulk sequencing data.
    Miura S; Vu T; Deng J; Buturla T; Oladeinde O; Choi J; Kumar S
    Sci Rep; 2020 Feb; 10(1):3498. PubMed ID: 32103044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.