These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 33035224)

  • 1. Remnant kelp bed refugia and future phase-shifts under ocean acidification.
    Ling SD; Cornwall CE; Tilbrook B; Hurd CL
    PLoS One; 2020; 15(10):e0239136. PubMed ID: 33035224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-dependent feedbacks, hysteresis, and demography of overgrazing sea urchins.
    Ling SD; Kriegisch N; Woolley B; Reeves SE
    Ecology; 2019 Feb; 100(2):e02577. PubMed ID: 30707451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.
    Ling SD; Johnson CR; Frusher SD; Ridgway KR
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22341-5. PubMed ID: 20018706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Individual Calcifiers to Ecosystem Dynamics: Ocean Acidification Effects on Urchins and Abalone.
    deVries MS; Ly N; Ebner C; Hallisey R
    Integr Comp Biol; 2024 Sep; 64(2):290-305. PubMed ID: 38986515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drift-kelp suppresses foraging movement of overgrazing sea urchins.
    Kriegisch N; Reeves SE; Flukes EB; Johnson CR; Ling SD
    Oecologia; 2019 Jul; 190(3):665-677. PubMed ID: 31250188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem.
    Salomon AK; Shears NT; Langlois TJ; Babcock RC
    Ecol Appl; 2008 Dec; 18(8):1874-87. PubMed ID: 19263885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocean acidification refugia in variable environments.
    Kapsenberg L; Cyronak T
    Glob Chang Biol; 2019 Oct; 25(10):3201-3214. PubMed ID: 31199553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions.
    Ling SD; Johnson CR
    Ecol Appl; 2012 Jun; 22(4):1232-45. PubMed ID: 22827131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-driven disparities among ecological interactions threaten kelp forest persistence.
    Provost EJ; Kelaher BP; Dworjanyn SA; Russell BD; Connell SD; Ghedini G; Gillanders BM; Figueira W; Coleman MA
    Glob Chang Biol; 2017 Jan; 23(1):353-361. PubMed ID: 27392308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem.
    Ullah H; Fordham DA; Goldenberg SU; Nagelkerken I
    Ecol Appl; 2024 Jun; 34(4):e2977. PubMed ID: 38706047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.
    Britton D; Cornwall CE; Revill AT; Hurd CL; Johnson CR
    Sci Rep; 2016 May; 6():26036. PubMed ID: 27229624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplification, not "tropicalization", of temperate marine ecosystems under ocean warming and acidification.
    Agostini S; Harvey BP; Milazzo M; Wada S; Kon K; Floc'h N; Komatsu K; Kuroyama M; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4771-4784. PubMed ID: 34268836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The present is the key to the past: linking regime shifts in kelp beds to the distribution of deep-living sea urchins.
    Filbee-Dexter K; Scheibling RE
    Ecology; 2017 Jan; 98(1):253-264. PubMed ID: 28052391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building global change resilience: Concrete has the potential to ameliorate the negative effects of climate-driven ocean change on a newly-settled calcifying invertebrate.
    Mos B; Dworjanyn SA; Mamo LT; Kelaher BP
    Sci Total Environ; 2019 Jan; 646():1349-1358. PubMed ID: 30235620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting ocean acidification impacts on kelp forest ecosystems.
    Schlenger AJ; Beas-Luna R; Ambrose RF
    PLoS One; 2021; 16(4):e0236218. PubMed ID: 33886569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cascading effects of ocean acidification in a rocky subtidal community.
    Asnaghi V; Chiantore M; Mangialajo L; Gazeau F; Francour P; Alliouane S; Gattuso JP
    PLoS One; 2013; 8(4):e61978. PubMed ID: 23613994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocean acidification increases iodine accumulation in kelp-based coastal food webs.
    Xu D; Brennan G; Xu L; Zhang XW; Fan X; Han WT; Mock T; McMinn A; Hutchins DA; Ye N
    Glob Chang Biol; 2019 Feb; 25(2):629-639. PubMed ID: 30295390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sea urchin repelling Tannin- Fe
    Kim S; Jung SM; Jung S; Shin HW; Hwang DS
    Chemosphere; 2021 Jan; 263():128276. PubMed ID: 33297220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictable patterns within the kelp forest can indirectly create temporary refugia from ocean acidification.
    Bednaršek N; Pelletier G; Beck MW; Feely RA; Siegrist Z; Kiefer D; Davis J; Peabody B
    Sci Total Environ; 2024 Oct; 945():174065. PubMed ID: 38897470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urchin grazing of kelp gametophytes in warming oceans.
    Veenhof RJ; Coleman MA; Champion C; Dworjanyn SA
    J Phycol; 2023 Oct; 59(5):838-855. PubMed ID: 37432133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.