These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33035618)

  • 41. Ancestral male recombination in Drosophila albomicans produced geographically restricted neo-Y chromosome haplotypes varying in age and onset of decay.
    Wei KH; Bachtrog D
    PLoS Genet; 2019 Nov; 15(11):e1008502. PubMed ID: 31738748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ovarian transcriptomic analysis of black Muscovy duck at the early, peak and late egg-laying stages.
    Hu Z; Liu J; Cao J; Zhang H; Liu X
    Gene; 2021 Apr; 777():145449. PubMed ID: 33482277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.
    Wang Y; Ding JT; Yang HM; Yan ZJ; Cao W; Li YB
    PLoS One; 2015; 10(11):e0143568. PubMed ID: 26599806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptome-seq provides insights into sex-preference pattern of gene expression between testis and ovary of the crucifix crab ( Charybdis feriatus).
    Zhang Y; Miao G; Fazhan H; Waiho K; Zheng H; Li S; Ikhwanuddin M; Ma H
    Physiol Genomics; 2018 May; 50(5):393-405. PubMed ID: 29570432
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Last mated male sperm precedence in doubly mated females is not ubiquitous: evidence from sperm competition in laboratory populations of Drosophila nasuta nasuta and Drosophila nasuta albomicans.
    Shruthi B; Ramesh SR
    J Genet; 2013; 92(2):309-12. PubMed ID: 23970089
    [No Abstract]   [Full Text] [Related]  

  • 46. Comparative analysis of glue proteins in the Drosophila nasuta subgroup.
    Ramesh SR; Kalisch WE
    Biochem Genet; 1989 Oct; 27(9-10):507-20. PubMed ID: 2515848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metaphase chromosomes of four species of the Drosophila nasuta subgroup.
    Hatsumi M; Morishige Y; Wakahama K
    Jpn J Genet; 1988 Oct; 63(5):435-44. PubMed ID: 3273767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The origins of the Japanese mainland population of Drosophila albomicans.
    Ohsako T; Aotsuka T; Kitagawa O
    Jpn J Genet; 1994 Apr; 69(2):183-94. PubMed ID: 8074888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RNA-Seq-based transcriptome analysis of reproduction- and growth-related genes in Lateolabrax japonicus ovaries at four different ages.
    Zhao C; Wang P; Qiu L
    Mol Biol Rep; 2018 Dec; 45(6):2213-2225. PubMed ID: 30386972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electron microscopic band-interband pattern of polytene chromosomes in Drosophila nasuta albomicans. 2. Salivary gland chromosome 2L.
    Singh OP; Kalisch WE
    Cytobios; 1991; 68(273):95-109. PubMed ID: 1807929
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Male accessory gland secretory proteins in a few members of the Drosophila nasuta subgroup.
    Ram KR; Ramesh SR
    Biochem Genet; 2001 Apr; 39(3-4):99-115. PubMed ID: 11521511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Satellite DNA of Drosophila nasuta nasuta and D. n. albomicana: localization in polytene and metaphase chromosomes.
    Ranganath HA; Schmidt ER; Hägele K
    Chromosoma; 1982; 85(3):361-8. PubMed ID: 7117029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.
    Sarangi M; Nagarajan A; Dey S; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):491-503. PubMed ID: 27659320
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial DNA polymorphism in natural populations of Drosophila albomicans (I)--Remarkable mtDNA polymorphism in the population of D. albomicans.
    Wang W; Ling FY; Shi LM
    Sci China B; 1994 Nov; 37(11):1329-40. PubMed ID: 7865124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative transcriptomic analysis of silkworm Bmovo-1 and wild type silkworm ovary.
    Xue R; Hu X; Zhu L; Cao G; Huang M; Xue G; Song Z; Lu J; Chen X; Gong C
    Sci Rep; 2015 Dec; 5():17867. PubMed ID: 26643037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. De novo assembly and characterization of the ovarian transcriptome reveal mechanisms of the final maturation stage in Chinese scallop Chlamys farreri.
    Li JY; Pan LQ; Miao JJ; Xu RY; Xu WJ
    Comp Biochem Physiol Part D Genomics Proteomics; 2016 Dec; 20():118-124. PubMed ID: 27664811
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complete mitochondrial genome of Drosophila albomicans.
    Kang X; Luo X; Zhang Z; Zhang Z; Yang J; Bi G
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3638-9. PubMed ID: 26358579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cold tolerance and metabolic rate increased by cold acclimation in Drosophila albomicans from natural populations.
    Isobe K; Takahashi A; Tamura K
    Genes Genet Syst; 2013; 88(5):289-300. PubMed ID: 24694392
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T; Malhotra N; Chanumolu SK; Chauhan RS
    Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.