These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 33035828)
1. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Yang N; Dong YQ; Jia GX; Fan SM; Li SZ; Yang SS; Li YB Biomed Pharmacother; 2020 Dec; 132():110835. PubMed ID: 33035828 [TBL] [Abstract][Full Text] [Related]
2. An important intestinal transporter that regulates the enterohepatic circulation of bile acids and cholesterol homeostasis: The apical sodium-dependent bile acid transporter (SLC10A2/ASBT). Xiao L; Pan G Clin Res Hepatol Gastroenterol; 2017 Oct; 41(5):509-515. PubMed ID: 28336180 [TBL] [Abstract][Full Text] [Related]
3. Role of the intestinal bile acid transporters in bile acid and drug disposition. Dawson PA Handb Exp Pharmacol; 2011; (201):169-203. PubMed ID: 21103970 [TBL] [Abstract][Full Text] [Related]
4. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids. Miyata M; Yamakawa H; Hayashi K; Kuribayashi H; Yamazoe Y; Yoshinari K Eur J Pharmacol; 2013 Aug; 714(1-3):507-14. PubMed ID: 23872411 [TBL] [Abstract][Full Text] [Related]
5. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Anwer MS; Stieger B Pflugers Arch; 2014 Jan; 466(1):77-89. PubMed ID: 24196564 [TBL] [Abstract][Full Text] [Related]
7. Irinotecan-induced bile acid malabsorption is associated with down-regulation of ileal Asbt (Slc10a2) in mice. Shi AX; Zhou Y; Zhang XY; Zhao YS; Qin HY; Wang YP; Wu XA Eur J Pharm Sci; 2017 May; 102():220-229. PubMed ID: 28288854 [TBL] [Abstract][Full Text] [Related]
8. Apical Sodium-Dependent Bile Acid Cotransporter, A Novel Transporter of Indocyanine Green, and Its Application in Drug Screening. Wu MR; Hsiao JK Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32209977 [TBL] [Abstract][Full Text] [Related]
9. Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges. Li M; Wang Q; Li Y; Cao S; Zhang Y; Wang Z; Liu G; Li J; Gu B Pharmacol Ther; 2020 Aug; 212():107539. PubMed ID: 32201314 [TBL] [Abstract][Full Text] [Related]
10. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4. Out C; Patankar JV; Doktorova M; Boesjes M; Bos T; de Boer S; Havinga R; Wolters H; Boverhof R; van Dijk TH; Smoczek A; Bleich A; Sachdev V; Kratky D; Kuipers F; Verkade HJ; Groen AK J Hepatol; 2015 Sep; 63(3):697-704. PubMed ID: 26022694 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice. Lundåsen T; Andersson EM; Snaith M; Lindmark H; Lundberg J; Östlund-Lindqvist AM; Angelin B; Rudling M PLoS One; 2012; 7(5):e37787. PubMed ID: 22662222 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Dyslipidemia in Obesity-Unique Regulation of Ileal Villus Cell Brush Border Membrane Sodium-Bile Acid Cotransport. Sundaram S; Palaniappan B; Nepal N; Chaffins S; Sundaram U; Arthur S Cells; 2019 Oct; 8(10):. PubMed ID: 31623375 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. Baghdasaryan A; Fuchs CD; Österreicher CH; Lemberger UJ; Halilbasic E; Påhlman I; Graffner H; Krones E; Fickert P; Wahlström A; Ståhlman M; Paumgartner G; Marschall HU; Trauner M J Hepatol; 2016 Mar; 64(3):674-81. PubMed ID: 26529078 [TBL] [Abstract][Full Text] [Related]
15. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Zheng X; Ekins S; Raufman JP; Polli JE Mol Pharm; 2009; 6(5):1591-603. PubMed ID: 19673539 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of ileal apical but not basolateral bile acid transport reduces atherosclerosis in apoE⁻/⁻ mice. Lan T; Haywood J; Dawson PA Atherosclerosis; 2013 Aug; 229(2):374-80. PubMed ID: 23880190 [TBL] [Abstract][Full Text] [Related]
17. A novel bioluminescence-based method to investigate uptake of bile acids in living cells. Ticho AL; Lee H; Gill RK; Dudeja PK; Saksena S; Lee D; Alrefai WA Am J Physiol Gastrointest Liver Physiol; 2018 Oct; 315(4):G529-G537. PubMed ID: 29927324 [TBL] [Abstract][Full Text] [Related]
18. Metabolic consequences of ileal interruption of the enterohepatic circulation of bile acids. van de Peppel IP; Verkade HJ; Jonker JW Am J Physiol Gastrointest Liver Physiol; 2020 Nov; 319(5):G619-G625. PubMed ID: 32938201 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435. Bhat BG; Rapp SR; Beaudry JA; Napawan N; Butteiger DN; Hall KA; Null CL; Luo Y; Keller BT J Lipid Res; 2003 Sep; 44(9):1614-21. PubMed ID: 12810816 [TBL] [Abstract][Full Text] [Related]
20. Homologue gene of bile acid transporters ntcp, asbt, and ost-alpha in rainbow trout Oncorhynchus mykiss: tissue expression, effect of fasting, and response to bile acid administration. Murashita K; Yoshiura Y; Chisada S; Furuita H; Sugita T; Matsunari H; Iwashita Y; Yamamoto T Fish Physiol Biochem; 2014 Apr; 40(2):511-25. PubMed ID: 24026769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]