These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Pancreatic cancers require autophagy for tumor growth. Yang S; Wang X; Contino G; Liesa M; Sahin E; Ying H; Bause A; Li Y; Stommel JM; Dell'antonio G; Mautner J; Tonon G; Haigis M; Shirihai OS; Doglioni C; Bardeesy N; Kimmelman AC Genes Dev; 2011 Apr; 25(7):717-29. PubMed ID: 21406549 [TBL] [Abstract][Full Text] [Related]
23. MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3. Wang C; Liu P; Wu H; Cui P; Li Y; Liu Y; Liu Z; Gou S Oncotarget; 2016 Mar; 7(12):14912-24. PubMed ID: 26908446 [TBL] [Abstract][Full Text] [Related]
24. MicroRNA-132 Plays an Independent Prognostic Role in Pancreatic Ductal Adenocarcinoma and Acts as a Tumor Suppressor. Chen Y; Zhu H; Wang Y; Song Y; Zhang P; Wang Z; Gao J; Li Z; Du Y Technol Cancer Res Treat; 2019 Jan; 18():1533033818824314. PubMed ID: 30803373 [TBL] [Abstract][Full Text] [Related]
25. Long non-coding RNA LINC01207 silencing suppresses AGR2 expression to facilitate autophagy and apoptosis of pancreatic cancer cells by sponging miR-143-5p. Liu C; Wang JO; Zhou WY; Chang XY; Zhang MM; Zhang Y; Yang XH Mol Cell Endocrinol; 2019 Aug; 493():110424. PubMed ID: 30991076 [TBL] [Abstract][Full Text] [Related]
26. Insights into the Role of microRNAs in Pancreatic Cancer Pathogenesis: Potential for Diagnosis, Prognosis, and Therapy. Khan MA; Zubair H; Srivastava SK; Singh S; Singh AP Adv Exp Med Biol; 2015; 889():71-87. PubMed ID: 26658997 [TBL] [Abstract][Full Text] [Related]
27. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Greither T; Grochola LF; Udelnow A; Lautenschläger C; Würl P; Taubert H Int J Cancer; 2010 Jan; 126(1):73-80. PubMed ID: 19551852 [TBL] [Abstract][Full Text] [Related]
28. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Wang P; Zhang J; Zhang L; Zhu Z; Fan J; Chen L; Zhuang L; Luo J; Chen H; Liu L; Chen Z; Meng Z Gastroenterology; 2013 Nov; 145(5):1133-1143.e12. PubMed ID: 23916944 [TBL] [Abstract][Full Text] [Related]
29. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. Yin Z; Ma T; Huang B; Lin L; Zhou Y; Yan J; Zou Y; Chen S J Exp Clin Cancer Res; 2019 Jul; 38(1):310. PubMed ID: 31307515 [TBL] [Abstract][Full Text] [Related]
30. TGFB1-induced autophagy affects the pattern of pancreatic cancer progression in distinct ways depending on SMAD4 status. Liang C; Xu J; Meng Q; Zhang B; Liu J; Hua J; Zhang Y; Shi S; Yu X Autophagy; 2020 Mar; 16(3):486-500. PubMed ID: 31177911 [TBL] [Abstract][Full Text] [Related]
31. Targeted Therapies for Pancreatic Cancer and Hurdles Ahead. Aslan M; Shahbazi R; Ulubayram K; Ozpolat B Anticancer Res; 2018 Dec; 38(12):6591-6606. PubMed ID: 30504367 [TBL] [Abstract][Full Text] [Related]
32. Antisense inhibition of microRNA-21 and microRNA-221 in tumor-initiating stem-like cells modulates tumorigenesis, metastasis, and chemotherapy resistance in pancreatic cancer. Zhao Y; Zhao L; Ischenko I; Bao Q; Schwarz B; Nieß H; Wang Y; Renner A; Mysliwietz J; Jauch KW; Nelson PJ; Ellwart JW; Bruns CJ; Camaj P Target Oncol; 2015 Dec; 10(4):535-48. PubMed ID: 25639539 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy. Papademetrio DL; Lompardía SL; Simunovich T; Costantino S; Mihalez CY; Cavaliere V; Álvarez É Target Oncol; 2016 Apr; 11(2):183-95. PubMed ID: 26373299 [TBL] [Abstract][Full Text] [Related]
34. Levels of the Autophagy-Related 5 Protein Affect Progression and Metastasis of Pancreatic Tumors in Mice. Görgülü K; Diakopoulos KN; Ai J; Schoeps B; Kabacaoglu D; Karpathaki AF; Ciecielski KJ; Kaya-Aksoy E; Ruess DA; Berninger A; Kowalska M; Stevanovic M; Wörmann SM; Wartmann T; Zhao Y; Halangk W; Voronina S; Tepikin A; Schlitter AM; Steiger K; Artati A; Adamski J; Aichler M; Walch A; Jastroch M; Hartleben G; Mantzoros CS; Weichert W; Schmid RM; Herzig S; Krüger A; Sainz B; Lesina M; Algül H Gastroenterology; 2019 Jan; 156(1):203-217.e20. PubMed ID: 30296435 [TBL] [Abstract][Full Text] [Related]
35. Wang F; Xia X; Yang C; Shen J; Mai J; Kim HC; Kirui D; Kang Y; Fleming JB; Koay EJ; Mitra S; Ferrari M; Shen H Clin Cancer Res; 2018 Jul; 24(13):3176-3185. PubMed ID: 29602802 [No Abstract] [Full Text] [Related]
36. MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Hessmann E; Schneider G; Ellenrieder V; Siveke JT Oncogene; 2016 Mar; 35(13):1609-18. PubMed ID: 26119937 [TBL] [Abstract][Full Text] [Related]
37. Roles of autophagy and metabolism in pancreatic cancer cell adaptation to environmental challenges. Maertin S; Elperin JM; Lotshaw E; Sendler M; Speakman SD; Takakura K; Reicher BM; Mareninova OA; Grippo PJ; Mayerle J; Lerch MM; Gukovskaya AS Am J Physiol Gastrointest Liver Physiol; 2017 Nov; 313(5):G524-G536. PubMed ID: 28705806 [TBL] [Abstract][Full Text] [Related]
38. Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Rachagani S; Macha MA; Heimann N; Seshacharyulu P; Haridas D; Chugh S; Batra SK Adv Drug Deliv Rev; 2015 Jan; 81():16-33. PubMed ID: 25453266 [TBL] [Abstract][Full Text] [Related]
39. Clinical potential of microRNAs in pancreatic ductal adenocarcinoma. Steele CW; Oien KA; McKay CJ; Jamieson NB Pancreas; 2011 Nov; 40(8):1165-71. PubMed ID: 22001830 [TBL] [Abstract][Full Text] [Related]