These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33035841)

  • 1. Time-course of axial residual strain remodeling and layer-specific thickening during aging along the human aorta.
    Sokolis DP
    J Biomech; 2020 Nov; 112():110065. PubMed ID: 33035841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-Specific Residual Deformations and Their Variation Along the Human Aorta.
    Sokolis DP; Gouskou N; Papadodima SA; Kourkoulis SK
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33876198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation of Axial Residual Strains Along the Course and Circumference of Human Aorta Considering Age and Gender.
    Sokolis DP; Bompas A; Papadodima SA; Kourkoulis SK
    J Biomech Eng; 2020 Feb; 142(2):. PubMed ID: 31141590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual strains in ascending thoracic aortic aneurysms: The effect of valve type, layer, and circumferential quadrant.
    Sokolis DP; Ch Markidi D; Iliopoulos DC; Kourkoulis SK
    J Biomech; 2023 Jan; 147():111432. PubMed ID: 36634401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion.
    Sommer G; Benedikt C; Niestrawska JA; Hohenberger G; Viertler C; Regitnig P; Cohnert TU; Holzapfel GA
    Acta Biomater; 2018 Jul; 75():235-252. PubMed ID: 29859367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional distribution of circumferential residual strains in the human aorta according to age and gender.
    Sokolis DP; Savva GD; Papadodima SA; Kourkoulis SK
    J Mech Behav Biomed Mater; 2017 Mar; 67():87-100. PubMed ID: 27988442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-Specific Properties of the Human Infra-Renal Aorta During Aging Considering Pre/Post-Failure Damage.
    Sokolis DP
    J Biomech Eng; 2024 Feb; 146(2):. PubMed ID: 38019302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening.
    Holzapfel GA; Sommer G; Auer M; Regitnig P; Ogden RW
    Ann Biomed Eng; 2007 Apr; 35(4):530-45. PubMed ID: 17285364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries.
    Schriefl AJ; Zeindlinger G; Pierce DM; Regitnig P; Holzapfel GA
    J R Soc Interface; 2012 Jun; 9(71):1275-86. PubMed ID: 22171063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
    Holzapfel GA; Sommer G; Gasser CT; Regitnig P
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2048-58. PubMed ID: 16006541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta.
    Sokolis DP
    J Mech Behav Biomed Mater; 2015 Jun; 46():229-43. PubMed ID: 25828156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress.
    Labrosse MR; Gerson ER; Veinot JP; Beller CJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():44-55. PubMed ID: 23127625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive biaxial mechanical response of aged human iliac arteries.
    Schulze-Bauer CA; Mörth C; Holzapfel GA
    J Biomech Eng; 2003 Jun; 125(3):395-406. PubMed ID: 12929245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional and age-dependent residual strains, curvature, and dimensions of the human ureter.
    Petsepe DC; Kourkoulis SK; Papadodima SA; Sokolis DP
    Proc Inst Mech Eng H; 2018 Feb; 232(2):149-162. PubMed ID: 29278079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional and directional variations in the layer-specific resistance to tear propagation in ascending thoracic aortic aneurysms.
    Kefalidi E; Angouras DC; Sokolis DP
    J Biomech; 2022 Jun; 138():111133. PubMed ID: 35569429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmural strain distribution in the blood vessel wall.
    Guo X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H881-6. PubMed ID: 15650158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings.
    Sommer G; Regitnig P; Költringer L; Holzapfel GA
    Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H898-912. PubMed ID: 20035029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.