These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33035860)
1. Use of grape seeds to reduce haze formation in white wines. Romanini E; McRae JM; Bilogrevic E; Colangelo D; Gabrielli M; Lambri M Food Chem; 2021 Mar; 341(Pt 1):128250. PubMed ID: 33035860 [TBL] [Abstract][Full Text] [Related]
2. First trials to assess the feasibility of grape seed powder (GSP) as a novel and sustainable bentonite alternative. Romanini E; McRae JM; Colangelo D; Lambri M Food Chem; 2020 Feb; 305():125484. PubMed ID: 31514048 [TBL] [Abstract][Full Text] [Related]
3. Extraction of Pathogenesis-Related Proteins and Phenolics in Sauvignon Blanc as Affected by Grape Harvesting and Processing Conditions. Tian B; Harrison R; Morton J; Jaspers M; Hodge S; Grose C; Trought M Molecules; 2017 Jul; 22(7):. PubMed ID: 28704961 [TBL] [Abstract][Full Text] [Related]
4. Wine Thermosensitive Proteins Adsorb First and Better on Bentonite during Fining: Practical Implications and Proposition of Alternative Heat Tests. Vernhet A; Meistermann E; Cottereau P; Charrier F; Chemardin P; Poncet-Legrand C J Agric Food Chem; 2020 Nov; 68(47):13450-13458. PubMed ID: 32142274 [TBL] [Abstract][Full Text] [Related]
5. Impact of bentonite additions during vinification on protein stability and volatile compounds of Albariño wines. Lira E; Rodríguez-Bencomo JJ; Salazar FN; Orriols I; Fornos D; López F J Agric Food Chem; 2015 Mar; 63(11):3004-11. PubMed ID: 25751284 [TBL] [Abstract][Full Text] [Related]
6. Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash pasteurization. Marangon M; Van Sluyter SC; Robinson EM; Muhlack RA; Holt HE; Haynes PA; Godden PW; Smith PA; Waters EJ Food Chem; 2012 Dec; 135(3):1157-65. PubMed ID: 22953838 [TBL] [Abstract][Full Text] [Related]
7. Wine protein haze: mechanisms of formation and advances in prevention. Van Sluyter SC; McRae JM; Falconer RJ; Smith PA; Bacic A; Waters EJ; Marangon M J Agric Food Chem; 2015 Apr; 63(16):4020-30. PubMed ID: 25847216 [TBL] [Abstract][Full Text] [Related]
8. Roles of grape thaumatin-like protein and chitinase in white wine haze formation. Marangon M; Van Sluyter SC; Neilson KA; Chan C; Haynes PA; Waters EJ; Falconer RJ J Agric Food Chem; 2011 Jan; 59(2):733-40. PubMed ID: 21189017 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Analysis of Sauvignon Blanc Grape Skin, Pulp and Seed and Relative Quantification of Pathogenesis-Related Proteins. Tian B; Harrison R; Morton J; Deb-Choudhury S PLoS One; 2015; 10(6):e0130132. PubMed ID: 26076362 [TBL] [Abstract][Full Text] [Related]
11. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine. Tabilo-Munizaga G; Gordon TA; Villalobos-Carvajal R; Moreno-Osorio L; Salazar FN; Pérez-Won M; Acuña S Food Chem; 2014 Jul; 155():214-20. PubMed ID: 24594177 [TBL] [Abstract][Full Text] [Related]
12. Advances in White Wine Protein Stabilization Technologies. Silva-Barbieri D; Salazar FN; López F; Brossard N; Escalona N; Pérez-Correa JR Molecules; 2022 Feb; 27(4):. PubMed ID: 35209041 [TBL] [Abstract][Full Text] [Related]
13. DCMC as a Promising Alternative to Bentonite in White Wine Stabilization. Impact on Protein Stability and Wine Aromatic Fraction. Saracino F; Brinco J; Gago D; Gomes da Silva M; Boavida Ferreira R; Ricardo-da-Silva J; Chagas R; Ferreira LM Molecules; 2021 Oct; 26(20):. PubMed ID: 34684769 [TBL] [Abstract][Full Text] [Related]
14. Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking. Van Sluyter SC; Warnock NI; Schmidt S; Anderson P; van Kan JA; Bacic A; Waters EJ J Agric Food Chem; 2013 Oct; 61(40):9705-11. PubMed ID: 24007329 [TBL] [Abstract][Full Text] [Related]
15. Influence of Fermentation Temperature, Yeast Strain, and Grape Juice on the Aroma Chemistry and Sensory Profile of Sauvignon Blanc Wines. Deed RC; Fedrizzi B; Gardner RC J Agric Food Chem; 2017 Oct; 65(40):8902-8912. PubMed ID: 28922915 [TBL] [Abstract][Full Text] [Related]
16. Monitoring the effects and side-effects on wine colour and flavonoid composition of the combined post-fermentative additions of seeds and mannoproteins. Alcalde-Eon C; Ferreras-Charro R; Ferrer-Gallego R; Rivero FJ; Heredia FJ; Escribano-Bailón MT Food Res Int; 2019 Dec; 126():108650. PubMed ID: 31732037 [TBL] [Abstract][Full Text] [Related]
17. Chitinases and thaumatin-like proteins in Sauvignon Blanc and Chardonnay musts during alcoholic fermentation. Ndlovu T; Buica A; Bauer FF Food Microbiol; 2019 Apr; 78():201-210. PubMed ID: 30497604 [TBL] [Abstract][Full Text] [Related]
18. Augmentation of chemical and organoleptic properties in Syzygium cumini wine by incorporation of grape seeds during vinification. VenuGopal KS; Cherita C; Anu-Appaiah KA Food Chem; 2018 Mar; 242():98-105. PubMed ID: 29037742 [TBL] [Abstract][Full Text] [Related]
19. Influence of flash heating and aspergillopepsin I supplementation on must and wine attributes of aromatic varieties. Gallo A; Roman T; Paolini M; Tonidandel L; Leonardelli A; Celotti E; Nardin T; Natolino A; Cappello N; Larcher R Food Res Int; 2024 Jun; 186():114332. PubMed ID: 38729715 [TBL] [Abstract][Full Text] [Related]
20. Determination of the grape invertase content (using PTA-ELISA) following various fining treatments versus changes in the total protein content of wine. relationships with wine foamability. Dambrouck T; Marchal R; Cilindre C; Parmentier M; Jeandet P J Agric Food Chem; 2005 Nov; 53(22):8782-9. PubMed ID: 16248585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]