BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33036252)

  • 1. Contrast Transfer Function-Based Exit-Wave Reconstruction and Denoising of Atomic-Resolution Transmission Electron Microscopy Images of Graphene and Cu Single Atom Substitutions by Deep Learning Framework.
    Lee J; Lee Y; Kim J; Lee Z
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33036252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exit wave reconstruction of a focal series of images with structural changes in high-resolution transmission electron microscopy.
    Zhang X; Chen S; Wang S; Huang Y; Jin C; Lin F
    J Microsc; 2024 May; ():. PubMed ID: 38819026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learning.
    Leth Larsen MH; Dahl F; Hansen LP; Barton B; Kisielowski C; Helveg S; Winther O; Hansen TW; Schiøtz J
    Ultramicroscopy; 2023 Jan; 243():113641. PubMed ID: 36401890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exit wave function reconstruction from two defocus images using neural network.
    Meng Z; Ming W; He Y; Shen R; Chen J
    Micron; 2024 Feb; 177():103564. PubMed ID: 37977014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging.
    Liu J; Yang Y; Wernick MN; Pretorius PH; King MA
    Med Phys; 2021 Jan; 48(1):156-168. PubMed ID: 33145782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising.
    Yuan N; Wang L; Ye C; Deng Z; Zhang J; Zhu Y
    Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exit wave reconstruction at atomic resolution.
    Allen LJ; McBride W; O'Leary NL; Oxley MP
    Ultramicroscopy; 2004 Jul; 100(1-2):91-104. PubMed ID: 15219694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs.
    Tillmann K; Thust A; Urban K
    Microsc Microanal; 2004 Apr; 10(2):185-98. PubMed ID: 15306045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-precision determination of the reconstruction of a 90 degree tilt boundary in YBa2Cu3O7-delta by aberration corrected HRTEM.
    Houben L; Thust A; Urban K
    Ultramicroscopy; 2006 Feb; 106(3):200-14. PubMed ID: 16226377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved iterative wave function reconstruction algorithm in high-resolution transmission electron microscopy.
    Ming WQ; Chen JH; He YT; Shen RH; Chen ZK
    Ultramicroscopy; 2018 Dec; 195():111-120. PubMed ID: 30227297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved Wiener deconvolution filter for high-resolution electron microscopy images.
    Lin F; Jin C
    Micron; 2013 Jul; 50():1-6. PubMed ID: 23628497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D reconstruction of nanocrystalline particles from a single projection.
    Chen FR; Kisielowski C; Van Dyck D
    Micron; 2015 Jan; 68():59-65. PubMed ID: 25306935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising.
    Tian Q; Zaretskaya N; Fan Q; Ngamsombat C; Bilgic B; Polimeni JR; Huang SY
    Neuroimage; 2021 Jun; 233():117946. PubMed ID: 33711484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Progress in filters for denoising cryo-electron microscopy images].
    Huang XR; Li S; Gao S
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 53(2):425-433. PubMed ID: 33879921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recording low and high spatial frequencies in exit wave reconstructions.
    Haigh SJ; Jiang B; Alloyeau D; Kisielowski C; Kirkland AI
    Ultramicroscopy; 2013 Oct; 133():26-34. PubMed ID: 23751209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of the n = 5 layered perovskite neodymium titanate using high-resolution transmission electron microscopy and image reconstruction.
    Sayagués M; Titmuss K; Meyer R; Kirkland A; Sloan J; Hutchison J; Tilley R
    Acta Crystallogr B; 2003 Aug; 59(Pt 4):449-55. PubMed ID: 12947228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
    Zhao T; Hoffman J; McNitt-Gray M; Ruan D
    Med Phys; 2019 Jan; 46(1):190-198. PubMed ID: 30351450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.