These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 33036268)
1. A Pilot Study of the Impact of Microwave Ablation on the Dielectric Properties of Breast Tissue. Neira LM; Mays RO; Sawicki JF; Schulman A; Harter J; Wilke LG; Behdad N; Van Veen BD; Hagness SC Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036268 [TBL] [Abstract][Full Text] [Related]
2. Physical modeling of microwave ablation zone clinical margin variance. Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574 [TBL] [Abstract][Full Text] [Related]
3. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models. Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540 [TBL] [Abstract][Full Text] [Related]
4. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Lazebnik M; McCartney L; Popovic D; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Magliocco A; Booske JH; Okoniewski M; Hagness SC Phys Med Biol; 2007 May; 52(10):2637-56. PubMed ID: 17473342 [TBL] [Abstract][Full Text] [Related]
5. Broadband lung dielectric properties over the ablative temperature range: Experimental measurements and parametric models. Sebek J; Bortel R; Prakash P Med Phys; 2019 Oct; 46(10):4291-4303. PubMed ID: 31286530 [TBL] [Abstract][Full Text] [Related]
6. Image and pathological changes after microwave ablation of breast cancer: a pilot study. Zhou W; Jiang Y; Chen L; Ling L; Liang M; Pan H; Wang S; Ding Q; Liu X; Wang S Eur J Radiol; 2014 Oct; 83(10):1771-7. PubMed ID: 25043496 [TBL] [Abstract][Full Text] [Related]
7. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz. Lopresto V; Pinto R; Lovisolo GA; Cavagnaro M Phys Med Biol; 2012 Apr; 57(8):2309-27. PubMed ID: 22460062 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning. Sebek J; Albin N; Bortel R; Natarajan B; Prakash P Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374 [TBL] [Abstract][Full Text] [Related]
9. Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer. Zhou W; Yu M; Pan H; Qiu W; Wang H; Qian M; Che N; Zhang K; Mao X; Li L; Wang R; Xie H; Ling L; Zhao Y; Liu X; Wang C; Ding Q; Wang S J Immunother Cancer; 2021 Apr; 9(4):. PubMed ID: 33795388 [TBL] [Abstract][Full Text] [Related]
10. Microwave ablation without subsequent lumpectomy versus breast-conserving surgery for early breast cancer: a propensity score matching study. Dai YQ; Liang P; Wang J; Luo YC; Yu XL; Han ZY; Liu FY; Li X; Tan SL; Wang Z; Wu C; Li JM; Yu J Int J Hyperthermia; 2023; 40(1):2186325. PubMed ID: 36944374 [TBL] [Abstract][Full Text] [Related]
11. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research. Jiang Y; Zhao J; Li W; Yang Y; Liu J; Qian Z Med Biol Eng Comput; 2017 Nov; 55(11):2027-2036. PubMed ID: 28462497 [TBL] [Abstract][Full Text] [Related]
12. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Lazebnik M; Popovic D; McCartney L; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Ogilvie T; Magliocco A; Breslin TM; Temple W; Mew D; Booske JH; Okoniewski M; Hagness SC Phys Med Biol; 2007 Oct; 52(20):6093-115. PubMed ID: 17921574 [TBL] [Abstract][Full Text] [Related]
13. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Deshazer G; Prakash P; Merck D; Haemmerich D Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040 [TBL] [Abstract][Full Text] [Related]
14. Temperature control and intermittent time-set protocol optimization for minimizing tissue carbonization in microwave ablation. Jin X; Feng Y; Zhu R; Qian L; Yang Y; Yu Q; Zou Z; Li W; Liu Y; Qian Z Int J Hyperthermia; 2022; 39(1):868-879. PubMed ID: 35858640 [TBL] [Abstract][Full Text] [Related]
15. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation. Wang J; Wu S; Wu Z; Gao H; Huang S Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463 [No Abstract] [Full Text] [Related]
16. Computational modeling of microwave ablation with thermal accelerants. Sebek J; Park WKC; Geimer S; Van Citters DW; Farah A; Dupuy DE; Meaney PM; Prakash P Int J Hyperthermia; 2023; 40(1):2255755. PubMed ID: 37710404 [TBL] [Abstract][Full Text] [Related]
17. Experimental characterisation of the thermal lesion induced by microwave ablation. Lopresto V; Pinto R; Cavagnaro M Int J Hyperthermia; 2014 Mar; 30(2):110-8. PubMed ID: 24571174 [TBL] [Abstract][Full Text] [Related]
18. Effects of microwave ablation on cysts and cystic neoplasms with tissue-mimicking model: an Li B; Li XG Int J Hyperthermia; 2023; 40(1):2220561. PubMed ID: 37336517 [TBL] [Abstract][Full Text] [Related]
19. Broadband Dielectric Properties of Ex Vivo Bovine Liver Tissue Characterized at Ablative Temperatures. Fallahi H; Sebek J; Prakash P IEEE Trans Biomed Eng; 2021 Jan; 68(1):90-98. PubMed ID: 32746009 [TBL] [Abstract][Full Text] [Related]
20. Enhanced antitumor efficacy through microwave ablation in combination with immune checkpoints blockade in breast cancer: A pre-clinical study in a murine model. Zhu J; Yu M; Chen L; Kong P; Li L; Ma G; Ge H; Cui Y; Li Z; Pan H; Xie H; Zhou W; Wang S Diagn Interv Imaging; 2018 Mar; 99(3):135-142. PubMed ID: 29398572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]