These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33036362)
1. GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series. Yasyukevich Y; Mylnikova A; Vesnin A Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036362 [TBL] [Abstract][Full Text] [Related]
2. Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains. Yasyukevich YV; Zatolokin D; Padokhin A; Wang N; Nava B; Li Z; Yuan Y; Yasyukevich A; Chen C; Vesnin A Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430685 [TBL] [Abstract][Full Text] [Related]
3. The 6 September 2017 X-Class Solar Flares and Their Impacts on the Ionosphere, GNSS, and HF Radio Wave Propagation. Yasyukevich Y; Astafyeva E; Padokhin A; Ivanova V; Syrovatskii S; Podlesnyi A Space Weather; 2018 Aug; 16(8):1013-1027. PubMed ID: 31031571 [TBL] [Abstract][Full Text] [Related]
4. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction. Huang L; Zhang H; Xu P; Geng J; Wang C; Liu J Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264424 [TBL] [Abstract][Full Text] [Related]
5. Estimation and Analysis of GNSS Differential Code Biases (DCBs) Using a Multi-Spacing Software Receiver. Wang Y; Zhao L; Gao Y Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435141 [TBL] [Abstract][Full Text] [Related]
6. The Impact of Satellite Time Group Delay and Inter-Frequency Differential Code Bias Corrections on Multi-GNSS Combined Positioning. Ge Y; Zhou F; Sun B; Wang S; Shi B Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28300787 [TBL] [Abstract][Full Text] [Related]
7. Temporal-Spatial Variation of Global GPS-Derived Total Electron Content, 1999-2013. Guo J; Li W; Liu X; Kong Q; Zhao C; Guo B PLoS One; 2015; 10(7):e0133378. PubMed ID: 26193101 [TBL] [Abstract][Full Text] [Related]
8. Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations. Li W; Huang L; Zhang S; Chai Y Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842443 [TBL] [Abstract][Full Text] [Related]
9. Real-Time Global Ionospheric Map and Its Application in Single-Frequency Positioning. Zhang L; Yao Y; Peng W; Shan L; He Y; Kong J Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845733 [TBL] [Abstract][Full Text] [Related]
10. Accuracy Analysis of International Reference Ionosphere 2016 and NeQuick2 in the Antarctic. Guo Z; Yao Y; Kong J; Chen G; Zhou C; Zhang Q; Shan L; Liu C Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672288 [TBL] [Abstract][Full Text] [Related]
11. Spatial and Temporal Variations of Polar Ionospheric Total Electron Content over Nearly Thirteen Years. Xi H; Jiang H; An J; Wang Z; Xu X; Yan H; Feng C Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963786 [TBL] [Abstract][Full Text] [Related]
12. Pattern of the variation of the TEC extracted from the GPS, IRI 2016, IRI-Plas 2017 and NeQuick 2 over polar region, Antarctica. Tariku YA Life Sci Space Res (Amst); 2020 May; 25():18-27. PubMed ID: 32414490 [TBL] [Abstract][Full Text] [Related]
13. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Ren X; Zhang X; Xie W; Zhang K; Yuan Y; Li X Sci Rep; 2016 Sep; 6():33499. PubMed ID: 27629988 [TBL] [Abstract][Full Text] [Related]
14. Machine learning based storm time modeling of ionospheric vertical total electron content over Ethiopia. Nigusie A; Tebabal A; Feyissa F Sci Rep; 2024 Aug; 14(1):19293. PubMed ID: 39164297 [TBL] [Abstract][Full Text] [Related]
15. Galileo and BeiDou AltBOC Signals and Their Perspectives for Ionospheric TEC Studies. Chen C; Pavlov I; Padokhin A; Yasyukevich Y; Demyanov V; Danilchuk E; Vesnin A Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409512 [TBL] [Abstract][Full Text] [Related]
16. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning. Zhou F; Li X; Li W; Chen W; Dong D; Wickert J; Schuh H Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28368346 [TBL] [Abstract][Full Text] [Related]
17. A Novel Clock Parameterization and Its Implications for Precise Point Positioning and Ionosphere Estimation. Keshin M; Sato Y; Nakakuki K; Hirokawa R Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590806 [TBL] [Abstract][Full Text] [Related]
18. Storm time IRI-Plas model forecast for an African equatorial station. Adebiyi SJ; Ikubanni SO; Adebesin BO; Adeniyi JO; Joshua BW; Adimula IA; Oladipo OA; Olawepo AO; Adekoya BJ Heliyon; 2019 Jun; 5(6):e01844. PubMed ID: 31194128 [TBL] [Abstract][Full Text] [Related]
19. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration. Savastano G; Komjathy A; Verkhoglyadova O; Mazzoni A; Crespi M; Wei Y; Mannucci AJ Sci Rep; 2017 Apr; 7():46607. PubMed ID: 28429754 [TBL] [Abstract][Full Text] [Related]
20. Investigation of GIM-TEC disturbances before M ≥ 6.0 inland earthquakes during 2003-2017. Zhu F; Jiang Y Sci Rep; 2020 Oct; 10(1):18038. PubMed ID: 33093593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]