These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 33036373)

  • 1. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations.
    Shkodenko L; Kassirov I; Koshel E
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33036373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of metal and metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations.
    Mukherjee D; Sil M; Goswami A; Lahiri D; Nag M
    J Basic Microbiol; 2023 Sep; 63(9):971-985. PubMed ID: 37154193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nano-metal oxides (TiO
    El Fadl FIA; Hegazy DE; Maziad NA; Ghobashy MM
    Int J Biol Macromol; 2023 Oct; 250():126248. PubMed ID: 37562465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eco-friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for In Vitro Antibacterial, Antibiofilm, and Antifungal Applications.
    Mohamed AA; Abu-Elghait M; Ahmed NE; Salem SS
    Biol Trace Elem Res; 2021 Jul; 199(7):2788-2799. PubMed ID: 32895893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: Antimicrobial sonodynamic therapy against Streptococcus mutans biofilms.
    Pourhajibagher M; Bahador A
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102432. PubMed ID: 34246828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiofilm Action of ZnO, SnO
    Khan F; Lee JW; Pham DNT; Khan MM; Park SK; Shin IS; Kim YM
    Recent Pat Nanotechnol; 2020; 14(3):239-249. PubMed ID: 32167434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of morphological and biochemical changes of zinc oxide nanoparticles induced toxicity against multi drug resistance bacteria.
    Asif N; Fatima S; Siddiqui T; Fatma T
    J Trace Elem Med Biol; 2022 Dec; 74():127069. PubMed ID: 36152464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria.
    Hayat S; Muzammil S; Rasool MH; Nisar Z; Hussain SZ; Sabri AN; Jamil S
    Microbiol Immunol; 2018 Apr; 62(4):211-220. PubMed ID: 29405384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium-doped zinc oxide nanoparticles alter biofilm formation of
    Iribarnegaray V; Navarro N; Robino L; Zunino P; Morales J; Scavone P
    Nanomedicine (Lond); 2019 Jun; 14(12):1551-1564. PubMed ID: 31166149
    [No Abstract]   [Full Text] [Related]  

  • 10. Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives.
    Tortella G; Rubilar O; Fincheira P; Pieretti JC; Duran P; Lourenço IM; Seabra AB
    Antibiotics (Basel); 2021 Jun; 10(7):. PubMed ID: 34203129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects.
    Sun C; Wang X; Dai J; Ju Y
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles.
    Ebadi M; Zolfaghari MR; Aghaei SS; Zargar M; Noghabi KA
    J Appl Microbiol; 2022 Jan; 132(1):221-236. PubMed ID: 34101961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting bacterial biofilm-related genes with nanoparticle-based strategies.
    Afrasiabi S; Partoazar A
    Front Microbiol; 2024; 15():1387114. PubMed ID: 38841057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus.
    Sharaf M; Sewid AH; Hamouda HI; Elharrif MG; El-Demerdash AS; Alharthi A; Hashim N; Hamad AA; Selim S; Alkhalifah DHM; Hozzein WN; Abdalla M; Saber T
    Microbiol Spectr; 2022 Aug; 10(4):e0025022. PubMed ID: 35852338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial Nanocomposites Based on Thermosetting Polymers Derived from Vegetable Oils and Metal Oxide Nanoparticles.
    Diez-Pascual AM
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31683856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Nano-Antimicrobials: Metal Nanoparticles, Methods and Mechanisms.
    Hoseinzadeh E; Makhdoumi P; Taha P; Hossini H; Stelling J; Kamal MA; Ashraf GM
    Curr Drug Metab; 2017; 18(2):120-128. PubMed ID: 27908256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians.
    Abdelghafar A; Yousef N; Askoura M
    BMC Microbiol; 2022 Oct; 22(1):244. PubMed ID: 36221053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials for alternative antibacterial therapy.
    Hemeg HA
    Int J Nanomedicine; 2017; 12():8211-8225. PubMed ID: 29184409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Antibiofilm Nanocomposites: Ag/Cu Bimetallic Nanoparticles Synthesized on the Surface of Graphene Oxide Nanosheets.
    Jang J; Lee JM; Oh SB; Choi Y; Jung HS; Choi J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35826-35834. PubMed ID: 32667802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial and antibiofilm efficacy of Ag NPs, Ni NPs and Al
    Edhari BA; Mashreghi M; Makhdoumi A; Darroudi M
    J Trace Elem Med Biol; 2021 Dec; 68():126840. PubMed ID: 34425454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.