These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33036375)

  • 1. A Computational Framework for Prediction and Analysis of Cancer Signaling Dynamics from RNA Sequencing Data-Application to the ErbB Receptor Signaling Pathway.
    Imoto H; Zhang S; Okada M
    Cancers (Basel); 2020 Oct; 12(10):. PubMed ID: 33036375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of signaling cross-talks contributing to acquired drug resistance in breast cancer cells by Bayesian statistical modeling.
    Azad AK; Lawen A; Keith JM
    BMC Syst Biol; 2015 Jan; 9():2. PubMed ID: 25599599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A text-based computational framework for patient -specific modeling for classification of cancers.
    Imoto H; Yamashiro S; Okada M
    iScience; 2022 Mar; 25(3):103944. PubMed ID: 35535207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational discovery of dynamic cell line specific Boolean networks from multiplex time-course data.
    Razzaq M; Paulevé L; Siegel A; Saez-Rodriguez J; Bourdon J; Guziolowski C
    PLoS Comput Biol; 2018 Oct; 14(10):e1006538. PubMed ID: 30372442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-erbB-2/ HER-2 upregulates fascin, an actin-bundling protein associated with cell motility, in human breast cancer cell lines.
    Grothey A; Hashizume R; Ji H; Tubb BE; Patrick CW; Yu D; Mooney EE; McCrea PD
    Oncogene; 2000 Oct; 19(42):4864-75. PubMed ID: 11039904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune signal transduction in leishmaniasis from natural to artificial systems: role of feedback loop insertion.
    Mol M; Patole MS; Singh S
    Biochim Biophys Acta; 2014 Jan; 1840(1):71-9. PubMed ID: 23994140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of ERBB Pathway-Activated Cells in Triple-Negative Breast Cancer.
    Cho SY
    Genomics Inform; 2019 Mar; 17(1):e3. PubMed ID: 30929404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems biology driving drug development: from design to the clinical testing of the anti-ErbB3 antibody seribantumab (MM-121).
    Schoeberl B; Kudla A; Masson K; Kalra A; Curley M; Finn G; Pace E; Harms B; Kim J; Kearns J; Fulgham A; Burenkova O; Grantcharova V; Yarar D; Paragas V; Fitzgerald J; Wainszelbaum M; West K; Mathews S; Nering R; Adiwijaya B; Garcia G; Kubasek B; Moyo V; Czibere A; Nielsen UB; MacBeath G
    NPJ Syst Biol Appl; 2017; 3():16034. PubMed ID: 28725482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen receptors promote NSCLC progression by modulating the membrane receptor signaling network: a systems biology perspective.
    Gao X; Cai Y; Wang Z; He W; Cao S; Xu R; Chen H
    J Transl Med; 2019 Sep; 17(1):308. PubMed ID: 31511014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosaic gene network modelling identified new regulatory mechanisms in HCV infection.
    Popik OV; Petrovskiy ED; Mishchenko EL; Lavrik IN; Ivanisenko VA
    Virus Res; 2016 Jun; 218():71-8. PubMed ID: 26481968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors.
    Kirouac DC; Du JY; Lahdenranta J; Overland R; Yarar D; Paragas V; Pace E; McDonagh CF; Nielsen UB; Onsum MD
    Sci Signal; 2013 Aug; 6(288):ra68. PubMed ID: 23943608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling and computational prediction of cancer drug resistance.
    Sun X; Hu B
    Brief Bioinform; 2018 Nov; 19(6):1382-1399. PubMed ID: 28981626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approach for optimally extending mathematical models of signaling networks using omics data.
    Bianconi F; Patiti F; Baldelli E; Crino L; Valigi P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6501-4. PubMed ID: 26737782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter estimation of dynamic biological network models using integrated fluxes.
    Liu Y; Gunawan R
    BMC Syst Biol; 2014 Nov; 8():127. PubMed ID: 25403239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model calibration and uncertainty analysis in signaling networks.
    Heinemann T; Raue A
    Curr Opin Biotechnol; 2016 Jun; 39():143-149. PubMed ID: 27085224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Neural Network Framework for Predicting the Tissue-of-Origin of 15 Common Cancer Types Based on RNA-Seq Data.
    He B; Zhang Y; Zhou Z; Wang B; Liang Y; Lang J; Lin H; Bing P; Yu L; Sun D; Luo H; Yang J; Tian G
    Front Bioeng Biotechnol; 2020; 8():737. PubMed ID: 32850691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2).
    Huan J; Wang L; Xing L; Qin X; Feng L; Pan X; Zhu L
    Gene; 2014 Jan; 533(1):346-55. PubMed ID: 23978611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks.
    Fröhlich F; Kaltenbacher B; Theis FJ; Hasenauer J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005331. PubMed ID: 28114351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.