These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33036379)

  • 1. Lysogeny in
    Garriss G; Henriques-Normark B
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33036379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages.
    Romero P; Croucher NJ; Hiller NL; Hu FZ; Ehrlich GD; Bentley SD; García E; Mitchell TJ
    J Bacteriol; 2009 Aug; 191(15):4854-62. PubMed ID: 19502408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny.
    Guerrero-Bustamante CA; Hatfull GF
    mBio; 2024 Feb; 15(2):e0326023. PubMed ID: 38236026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages.
    Brady A; Felipe-Ruiz A; Gallego Del Sol F; Marina A; Quiles-Puchalt N; Penadés JR
    Annu Rev Microbiol; 2021 Oct; 75():563-581. PubMed ID: 34343015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features.
    Putzeys L; Poppeliers J; Boon M; Lood C; Vallino M; Lavigne R
    mSystems; 2023 Apr; 8(2):e0118922. PubMed ID: 36794936
    [No Abstract]   [Full Text] [Related]  

  • 6. [Biology of lysogenic strains of Streptococcus bovis and virulent mutants of their temperate phages].
    Tarakanov BV
    Mikrobiologiia; 1996; 65(5):656-62. PubMed ID: 9102549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeated outbreaks drive the evolution of bacteriophage communication.
    Doekes HM; Mulder GA; Hermsen R
    Elife; 2021 Jan; 10():. PubMed ID: 33459590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications.
    Zhang M; Zhang T; Yu M; Chen YL; Jin M
    Viruses; 2022 Aug; 14(9):. PubMed ID: 36146712
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Sinha V; Goyal A; Svenningsen SL; Semsey S; Krishna S
    Front Microbiol; 2017; 8():1386. PubMed ID: 28798729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation.
    Nawel Z; Rima O; Amira B
    Microb Pathog; 2022 Apr; 165():105490. PubMed ID: 35307601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophages as sources of small non-coding RNA molecules.
    Bloch S; Lewandowska N; Węgrzyn G; Nejman-Faleńczyk B
    Plasmid; 2021 Jan; 113():102527. PubMed ID: 32768406
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Martín-Galiano AJ; García E
    Front Cell Infect Microbiol; 2021; 11():775402. PubMed ID: 34869076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria.
    Wendling CC; Piecyk A; Refardt D; Chibani C; Hertel R; Liesegang H; Bunk B; Overmann J; Roth O
    BMC Evol Biol; 2017 Apr; 17(1):98. PubMed ID: 28399796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriophages benefit from generalized transduction.
    Fillol-Salom A; Alsaadi A; Sousa JAM; Zhong L; Foster KR; Rocha EPC; Penadés JR; Ingmer H; Haaber J
    PLoS Pathog; 2019 Jul; 15(7):e1007888. PubMed ID: 31276485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of temperate phages drives loss of type I CRISPR-Cas systems.
    Rollie C; Chevallereau A; Watson BNJ; Chyou TY; Fradet O; McLeod I; Fineran PC; Brown CM; Gandon S; Westra ER
    Nature; 2020 Feb; 578(7793):149-153. PubMed ID: 31969710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.
    Carrolo M; Frias MJ; Pinto FR; Melo-Cristino J; Ramirez M
    PLoS One; 2010 Dec; 5(12):e15678. PubMed ID: 21187931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum.
    Kalatzis PG; Rørbo NI; Castillo D; Mauritzen JJ; Jørgensen J; Kokkari C; Zhang F; Katharios P; Middelboe M
    Viruses; 2017 May; 9(5):. PubMed ID: 28531104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny.
    McCullor K; Postoak B; Rahman M; King C; McShan WM
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin.
    Romero P; López R; García E
    J Bacteriol; 2004 Dec; 186(24):8229-39. PubMed ID: 15576771
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.