These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33036477)

  • 1. Does the Position of Foot-Mounted IMU Sensors Influence the Accuracy of Spatio-Temporal Parameters in Endurance Running?
    Zrenner M; Küderle A; Roth N; Jensen U; Dümler B; Eskofier BM
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Different Algorithms for Calculating Velocity and Stride Length in Running Using Inertial Measurement Units.
    Zrenner M; Gradl S; Jensen U; Ullrich M; Eskofier BM
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30513595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Foot Trajectory and Stride Length during Level Ground Running Using Foot-Mounted Inertial Measurement Units.
    Suzuki Y; Hahn ME; Enomoto Y
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensor".
    Schmidt M; Alt T; Nolte K; Jaitner T
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement.
    Tan T; Strout ZA; Shull PB
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1215-1222. PubMed ID: 32763858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stride Lengths during Maximal Linear Sprint Acceleration Obtained with Foot-Mounted Inertial Measurement Units.
    de Ruiter CJ; Wilmes E; van Ardenne PS; Houtkamp N; Prince RA; Wooldrik M; van Dieën JH
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of IMU Design on IMU-Derived Stride Metrics for Running.
    Potter MV; Ojeda LV; Perkins NC; Cain SM
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Stair Running Performance Using Inertial Sensors.
    Ojeda LV; Zaferiou AM; Cain SM; Vitali RV; Davidson SP; Stirling LA; Perkins NC
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29149063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring highly accurate foot position and angle trajectories with foot-mounted IMUs in clinical practice.
    Jocham AJ; Laidig D; Guggenberger B; Seel T
    Gait Posture; 2024 Feb; 108():63-69. PubMed ID: 37988888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of Running Gait Event Detection Algorithms in a Semi-Uncontrolled Environment.
    Donahue SR; Hahn ME
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity of Spatio-Temporal Gait Parameters in Healthy Young Adults Using a Motion-Sensor-Based Gait Analysis System (ORPHE ANALYTICS) during Walking and Running.
    Uno Y; Ogasawara I; Konda S; Yoshida N; Otsuka N; Kikukawa Y; Tsujii A; Nakata K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of an inertial measurement unit for the quantification of rearfoot kinematics during running.
    Koska D; Gaudel J; Hein T; Maiwald C
    Gait Posture; 2018 Jul; 64():135-140. PubMed ID: 29906659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor.
    Chow DHK; Tremblay L; Lam CY; Yeung AWY; Cheng WHW; Tse PTW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strike index estimation using a convolutional neural network with a single, shoe-mounted inertial sensor.
    Tan T; Strout ZA; Cheung RTH; Shull PB
    J Biomech; 2022 Jun; 139():111145. PubMed ID: 35594817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stride length determination during overground running using a single foot-mounted inertial measurement unit.
    Brahms CM; Zhao Y; Gerhard D; Barden JM
    J Biomech; 2018 Apr; 71():302-305. PubMed ID: 29459072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Footwear, Running Speed, and Location on the Validity of Two Commercially Available Inertial Measurement Units During Running.
    Napier C; Willy RW; Hannigan BC; McCann R; Menon C
    Front Sports Act Living; 2021; 3():643385. PubMed ID: 33981991
    [No Abstract]   [Full Text] [Related]  

  • 17. Tibial bone forces can be monitored using shoe-worn wearable sensors during running.
    Elstub LJ; Nurse CA; Grohowski LM; Volgyesi P; Wolf DN; Zelik KE
    J Sports Sci; 2022 Aug; 40(15):1741-1749. PubMed ID: 35938189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of shoe-type inertial measurement units for Parkinson's disease patients during treadmill walking.
    Lee M; Youm C; Jeon J; Cheon SM; Park H
    J Neuroeng Rehabil; 2018 May; 15(1):38. PubMed ID: 29764466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of IMU position and orientation placement errors on ground reaction force estimation.
    Tan T; Chiasson DP; Hu H; Shull PB
    J Biomech; 2019 Dec; 97():109416. PubMed ID: 31630774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.