BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33036492)

  • 1. Effect of Vesicle Size on the Cytolysis of Cell-Penetrating Peptides (CPPs).
    Sakamoto K; Kitano T; Kuwahara H; Tedani M; Aburai K; Futaki S; Abe M; Sakai H; Ohtaka H; Yamashita Y
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Process and Factors Controlling the Direct Translocation of Cell-Penetrating Peptide through Bio-Membrane.
    Sakamoto K; Morishita T; Aburai K; Sakai K; Abe M; Nakase I; Futaki S; Sakai H
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct entry of cell-penetrating peptide can be controlled by maneuvering the membrane curvature.
    Sakamoto K; Morishita T; Aburai K; Ito D; Imura T; Sakai K; Abe M; Nakase I; Futaki S; Sakai H
    Sci Rep; 2021 Jan; 11(1):31. PubMed ID: 33420144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells.
    Islam MZ; Sharmin S; Moniruzzaman M; Yamazaki M
    Appl Microbiol Biotechnol; 2018 May; 102(9):3879-3892. PubMed ID: 29523934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides.
    Liu J; Afshar S
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pyrenebutyrate on the translocation of arginine-rich cell-penetrating peptides through artificial membranes: recruiting peptides to the membranes, dissipating liquid-ordered phases, and inducing curvature.
    Katayama S; Nakase I; Yano Y; Murayama T; Nakata Y; Matsuzaki K; Futaki S
    Biochim Biophys Acta; 2013 Sep; 1828(9):2134-42. PubMed ID: 23711826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Single GUV Method for Revealing the Action of Cell-Penetrating Peptides in Biomembranes.
    Moghal MMR; Shuma ML; Islam MZ; Yamazaki M
    Methods Mol Biol; 2022; 2383():167-179. PubMed ID: 34766289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Mechanical Properties of Lipid Bilayers on the Entry of Cell-Penetrating Peptides into Single Vesicles.
    Islam MZ; Sharmin S; Levadnyy V; Alam Shibly SU; Yamazaki M
    Langmuir; 2017 Mar; 33(9):2433-2443. PubMed ID: 28166411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
    Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group.
    Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H
    J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics.
    Grasso G; Muscat S; Rebella M; Morbiducci U; Audenino A; Danani A; Deriu MA
    J Biomech; 2018 May; 73():137-144. PubMed ID: 29631749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes.
    Weinberger A; Walter V; MacEwan SR; Schmatko T; Muller P; Schroder AP; Chilkoti A; Marques CM
    Sci Rep; 2017 Mar; 7():43963. PubMed ID: 28262825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shuffled lipidation pattern and degree of lipidation determines the membrane interaction behavior of a linear cationic membrane-active peptide.
    Hedegaard SF; Bruhn DS; Khandelia H; Cárdenas M; Nielsen HM
    J Colloid Interface Sci; 2020 Oct; 578():584-597. PubMed ID: 32544630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficacies of cell-penetrating peptides in accumulating in large unilamellar vesicles depend on their ability to form inverted micelles.
    Swiecicki JM; Bartsch A; Tailhades J; Di Pisa M; Heller B; Chassaing G; Mansuy C; Burlina F; Lavielle S
    Chembiochem; 2014 Apr; 15(6):884-91. PubMed ID: 24677480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of lipid interactions with cell-penetrating peptides.
    Sauder R; Seelig J; Ziegler A
    Methods Mol Biol; 2011; 683():129-55. PubMed ID: 21053127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane Molecular Interactions and Induced Structures of CPPs.
    Madani F; Gräslund A
    Methods Mol Biol; 2022; 2383():153-165. PubMed ID: 34766288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution NMR studies of cell-penetrating peptides in model membrane systems.
    Mäler L
    Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface charge density and fatty acids enhance the membrane permeation rate of CPP-cargo complexes.
    Via MA; Wilke N; Mayorga LS; Del Pópolo MG
    Soft Matter; 2020 Nov; 16(43):9890-9898. PubMed ID: 33020785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.